Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,343
result(s) for
"Aerial photogrammetry"
Sort by:
Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests
by
Liu, Hao
,
Ruan, Honghua
,
Zhang, Zhengnan
in
aerial photogrammetry
,
Aerial photography
,
Biomass
2019
Estimating forest structural attributes of planted forests plays a key role in managing forest resources, monitoring carbon stocks, and mitigating climate change. High-resolution and low-cost remote-sensing data are increasingly available to measure three-dimensional (3D) canopy structure and model forest structural attributes. In this study, we compared two suites of point cloud metrics and the accuracies of predictive models of forest structural attributes using unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) and digital aerial photogrammetry (DAP) data, in a subtropical coastal planted forest of East China. A comparison between UAV-LiDAR and UAV-DAP metrics was performed across plots among different tree species, heights, and stem densities. The results showed that a higher similarity between the UAV-LiDAR and UAV-DAP metrics appeared in the dawn redwood plots with greater height and lower stem density. The comparison between the UAV-LiDAR and DAP metrics showed that the metrics of the upper percentiles (r for dawn redwood = 0.95–0.96, poplar = 0.94–0.95) showed a stronger correlation than the lower percentiles (r = 0.92–0.93, 0.90–0.92), whereas the metrics of upper canopy return density (r = 0.21–0.24, 0.14–0.15) showed a weaker correlation than those of lower canopy return density (r = 0.32–0.68, 0.31–0.52). The Weibull α parameter indicated a higher correlation (r = 0.70–0.72) than that of the Weibull β parameter (r = 0.07–0.60) for both dawn redwood and poplar plots. The accuracies of UAV-LiDAR (adjusted (Adj)R2 = 0.58–0.91, relative root-mean-square error (rRMSE) = 9.03%–24.29%) predicted forest structural attributes were higher than UAV-DAP (Adj-R2 = 0.52–0.83, rRMSE = 12.20%–25.84%). In addition, by comparing the forest structural attributes between UAV-LiDAR and UAV-DAP predictive models, the greatest difference was found for volume (ΔAdj-R2 = 0.09, ΔrRMSE = 4.20%), whereas the lowest difference was for basal area (ΔAdj-R2 = 0.03, ΔrRMSE = 0.86%). This study proved that the UAV-DAP data are useful and comparable to LiDAR for forest inventory and sustainable forest management in planted forests, by providing accurate estimations of forest structural attributes.
Journal Article
Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry
by
Wilkinson, Benjamin
,
Canestrelli, Alberto
,
Ifju, Peter
in
aerial photogrammetry
,
Aerial photography
,
Aircraft
2021
This study evaluates the skills of two types of drone-based point clouds, derived from LiDAR and photogrammetric techniques, in estimating ground elevation, vegetation height, and vegetation density on a highly vegetated salt marsh. The proposed formulation is calibrated and tested using data measured on a Spartina alterniflora-dominated salt marsh in Little Sapelo Island, USA. The method produces high-resolution (ground sampling distance = 0.40 m) maps of ground elevation and vegetation characteristics and captures the large gradients in the proximity of tidal creeks. Our results show that LiDAR-based techniques provide more accurate reconstructions of marsh vegetation (height: MAEVH = 12.6 cm and RMSEVH = 17.5 cm; density: MAEVD = 6.9 stems m−2 and RMSEVD = 9.4 stems m−2) and morphology (MAEM = 4.2 cm; RMSEM = 5.9 cm) than Digital Aerial Photogrammetry (DAP) (MAEVH = 31.1 cm; RMSEVH = 38.1 cm; MAEVD = 12.7 stems m−2; RMSEVD = 16.6 stems m−2; MAEM = 11.3 cm; RMSEM = 17.2 cm). The accuracy of the classification procedure for vegetation calculation negligibly improves when RGB images are used as input parameters together with the LiDAR-UAV point cloud (MAEVH = 6.9 cm; RMSEVH = 9.4 cm; MAEVD = 10.0 stems m−2; RMSEVD = 14.0 stems m−2). However, it improves when used together with the DAP-UAV point cloud (MAEVH = 21.7 cm; RMSEVH = 25.8 cm; MAEVD = 15.2 stems m−2; RMSEVD = 18.7 stems m−2). Thus, we discourage using DAP-UAV-derived point clouds for high-resolution vegetation mapping of coastal areas, if not coupled with other data sources.
Journal Article
Classification of Mediterranean Shrub Species from UAV Point Clouds
by
Estornell, Javier
,
Crespo-Peremarch, Pablo
,
Carbonell-Rivera, Juan Pedro
in
aerial photogrammetry
,
Aerial photography
,
Atmospheric models
2022
Modelling fire behaviour in forest fires is based on meteorological, topographical, and vegetation data, including species’ type. To accurately parameterise these models, an inventory of the area of analysis with the maximum spatial and temporal resolution is required. This study investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify tree and shrub species in Mediterranean forests, and this information is key for the correct generation of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11 shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites, using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical, spectral, and neighbour-based features were obtained from the resulting point cloud generated. Using these features, points belonging to tree and shrub species were classified using several machine learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected, classified points were clustered based on their geometry and tested with evaluation data, and overall accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique opens a wide range of possibilities, including the identification of species as a first step for further extraction of structure and fuel variables as input for wildfire behaviour models.
Journal Article
Field-measured canopy height may not be as accurate and heritable as believed: evidence from advanced 3D sensing
by
Li, Shaochen
,
Zhang, Songyin
,
Li, Qing
in
Accuracy
,
aerial photogrammetry
,
Aerial photography
2023
Canopy height (CH) is an important trait for crop breeding and production. The rapid development of 3D sensing technologies shed new light on high-throughput height measurement. However, a systematic comparison of the accuracy and heritability of different 3D sensing technologies is seriously lacking. Moreover, it is questionable whether the field-measured height is as reliable as believed. This study uncovered these issues by comparing traditional height measurement with four advanced 3D sensing technologies, including terrestrial laser scanning (TLS), backpack laser scanning (BLS), gantry laser scanning (GLS), and digital aerial photogrammetry (DAP). A total of 1920 plots covering 120 varieties were selected for comparison. Cross-comparisons of different data sources were performed to evaluate their performances in CH estimation concerning different CH, leaf area index (LAI), and growth stage (GS) groups. Results showed that 1) All 3D sensing data sources had high correlations with field measurement (
r
> 0.82), while the correlations between different 3D sensing data sources were even better (
r
> 0.87). 2) The prediction accuracy between different data sources decreased in subgroups of CH, LAI, and GS. 3) Canopy height showed high heritability from all datasets, and 3D sensing datasets had even higher heritability (
H
2
= 0.79–0.89) than FM (field measurement) (
H
2
= 0.77). Finally, outliers of different datasets are analyzed. The results provide novel insights into different methods for canopy height measurement that may ensure the high-quality application of this important trait.
Highlights
The effects of canopy height, leaf area index, and growth stage on the accurate monitoring of canopy height with different 3D sensors were systematically evaluated.
Field-measured canopy height may not be as accurate as believed, especially in the plots with higher canopy height and at later growth stages.
3D sensing methods achieved higher heritable canopy height estimation than field measurement.
Journal Article
Assessing Geomorphic Change in Restored Coastal Dune Ecosystems Using a Multi-Platform Aerial Approach
by
Marvin, M. Colin
,
Hilgendorf, Zach
,
Turner, Craig M.
in
aeolian geomorphology
,
aerial photogrammetry
,
altitude
2021
Uncrewed aerial systems (UAS) provide an effective method to examine geomorphic and vegetation change in restored coastal dune ecosystems. Coupling structure-from-motion (SfM) photogrammetry with RGB orthomosaic imagery allows researchers to characterize spatial-temporal geomorphic responses associated with differences in vegetation cover. Such approaches provide quantitative data on landscape morphodynamics and sediment erosion and deposition responses that allow scientists and land managers to assess the efficacy of dynamic restoration efforts and, in turn, make informed decisions for future restoration projects. Two different restored coastal foredune sites in Humboldt County, California were monitored between 2016–20 with UAS (quadcopter and fixed-wing), kite aerial photogrammetry (KAP), and terrestrial laser scanning (TLS) platforms. We compared our KAP- and UAS-SfM elevation models to concurrently collected TLS bare earth models for five of our fifteen collections. The goal of this study was to inform on the potential of a multi-platform aerial approach for calculating geomorphic differences (i.e., topographic differencing), in order to quantify sediment erosion and deposition, and vegetation change over a coastal dune ecosystem. While UAS-SfM datasets were relatively well fit to their TLS counterparts (2.1–12.2% area of difference), the KAP-SfM surfaces exhibited higher deviations (23.6–27.6%) and suffered from systematic collection inconsistencies related to methods and susceptibility to external factors (e.g., the influence of wind speed and direction on variable altitude, image overlap, and coverage extent). Finally, we provide commentary on the logistical considerations regarding KAP and UAS data collection and the construction of uncertainty budgets for geomorphic change detection (GCD), while providing suggestions for standardizing methods for uncertainty budgeting. While we propose an approach that incorporates multiple levels of collection- and processing-based uncertainty, we also recognize that uncertainty is often project-specific and outline the development of potential standards for incorporating uncertainty budgets in SfM projects.
Journal Article
Feasibility Study Using UAV Aerial Photogrammetry for a Boundary Verification Survey of a Digitalized Cadastral Area in an Urban City of Taiwan
2020
In conducting land boundary verification surveys in digitalized cadastral areas in Taiwan, possible parcel points must be surveyed. These points are employed in the overlap analysis and map registration of possible parcel points and digitalized cadastral maps to identify the coordinates of parcel points. Based on the computed horizontal distance and angle between control points and parcel points, parcels are staked out using ground surveys. Most studies survey possible parcel points using ground surveys with, for example, total stations. Compared with ground surveys, UAV (Unmanned Aerial Vehicle) aerial photogrammetry can provide more possible parcel points. Thus, an overlap analysis of digitalized cadastral maps, combined with the collection of possible parcel points, will be more comprehensive. In this study, a high-quality-medium format camera, with a 55 mm focal length, was carried on a rotary UAV to take images, with a 3 cm ground sampling distance (GSD), flying 300 m above the ground. The images were taken with an 80% end-lap and side-lap to increase the visibility of the terrain details for stereo-mapping. According to the test conducted in this study, UAV aerial photogrammetry can accurately provide supplementary control points and assist in the boundary verification of digitalized cadastral areas in Taiwan.
Journal Article
A Comparative Assessment of Multi-Source Generation of Digital Elevation Models for Fluvial Landscapes Characterization and Monitoring
by
Sudra, Paweł
,
Demarchi, Luca
,
Chormański, Jarosław
in
3-D graphics
,
Accuracy
,
aerial photogrammetry
2023
Imaging and measuring the Earth’s relief with sensors mounted upon unmanned aerial vehicles is an increasingly frequently used and promising method of remote sensing. In the context of fluvial geomorphology and its applications, e.g., landform mapping or flood modelling, the reliable representation of the land surface on digital elevation models is crucial. The main objective of the study was to assess and compare the accuracy of state-of-the-art remote sensing technologies in generating DEMs for riverscape characterization and fluvial monitoring applications. In particular, we were interested in DAP and LiDAR techniques comparison, and UAV applicability. We carried out field surveys, i.e., GNSS-RTK measurements, UAV and aircraft flights, on islands and sandbars within a nature reserve on a braided section of the Vistula River downstream from the city of Warsaw, Poland. We then processed the data into DSMs and DTMs based on four sources: ULS (laser scanning from UAV), UAV-DAP (digital aerial photogrammetry), ALS (airborne laser scanning), and satellite Pléiades imagery processed with DAP. The magnitudes of errors are represented by the cross-reference of values generated on DEMs with GNSS-RTK measurements. Results are presented for exposed sediment bars, riverine islands covered by low vegetation and shrubs, or covered by riparian forest. While the average absolute height error of the laser scanning DTMs oscillates around 8–11 cm for most surfaces, photogrammetric DTMs from UAV and satellite data gave errors averaging more than 30 cm. Airborne and UAV LiDAR measurements brought almost the perfect match. We showed that the UAV-based LiDAR sensors prove to be useful for geomorphological mapping, especially for geomorphic analysis of the river channel at a large scale, because they reach similar accuracies to ALS and better than DAP-based image processing.
Journal Article
An Accurate Geocoding Method for GB-SAR Images Based on Solution Space Search and Its Application in Landslide Monitoring
2021
Although ground-based synthetic aperture radar (GB-SAR) interferometry has a very high precision with respect to deformation monitoring, it is difficult to match the fan-shaped grid coordinates with the local topography in the geographical space because of the slant range projection imaging mode of the radar. To accurately identify the deformation target and its position, high-accuracy geocoding of the GB-SAR images must be performed to transform them from the two-dimensional plane coordinate system to the three-dimensional (3D) local coordinate system. To overcome difficulties of traditional methods with respect to the selection of control points in GB-SAR images in a complex scattering environment, a high-resolution digital surface model obtained by unmanned aerial vehicle (UAV) aerial photogrammetry was used to establish a high-accuracy GB-SAR coordinate transformation model. An accurate GB-SAR image geocoding method based on solution space search was proposed. Based on this method, three modules are used for geocoding: framework for the unification of coordinate elements, transformation model, and solution space search of the minimum Euclidean distance. By applying this method to the Laoguanjingtai landslide monitoring experiment on Hailuogou Glacier, a subpixel geocoding accuracy was realized. The effectiveness and accuracy of the proposed method were verified by contrastive analysis and error assessment. The method proposed in this study can be applied for accurate 3D interpretation and analysis of the spatiotemporal characteristic in GB-SAR deformation monitoring and should be popularized.
Journal Article
Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry
by
Theberge, Dustin
,
Coops, Nicholas C.
,
Watson, Catherine
in
aerial photogrammetry
,
Aerial photography
,
Alberta
2021
Measures of vegetation structure are often key within ecological restoration monitoring programs because a change in structure is rapidly identifiable, measurements are straightforward, and structure is often a good surrogate for species composition. This paper investigates the use of drone-based digital aerial photogrammetry (DAP) for the characterization of the structure of regenerating vegetation as well as the ability to inform restoration programs through spatial arrangement assessment. We used cluster analysis on five DAP-derived metrics to classify vegetation structure into seven classes across three sites of ongoing restoration since linear disturbances in 2005, 2009, and 2014 in temperate and boreal coniferous forests in Alberta, Canada. The spatial arrangement of structure classes was assessed using land cover maps, mean patch size, and measures of local spatial association. We observed DAP heights of short-stature vegetation were consistently underestimated, but strong correlations (rs > 0.75) with field height were found for juvenile trees, shrubs, and perennials. Metrics of height and canopy complexity allowed for the extraction of relatively tall and complex vegetation structures, whereas canopy cover and height variability metrics enabled the classification of the shortest vegetation structures. We found that the boreal site disturbed in 2009 had the highest cover of classes associated with complex vegetation structures. This included early regenerative (22%) and taller (13.2%) wood-like structures as well as structures representative of tall graminoid and perennial vegetation (15.3%), which also showed the highest patchiness. The developed tools provide large-scale maps of the structure, enabling the identification and assessment of vegetational patterns, which is challenging based on traditional field sampling that requires pre-defined location-based hypotheses. The approach can serve as a basis for the evaluation of specialized restoration objectives as well as objectives tailored towards processes of ecological succession, and support prioritization of future inspections and mitigation measures.
Journal Article
Estimating Structure and Biomass of a Secondary Atlantic Forest in Brazil Using Fourier Transforms of Vertical Profiles Derived from UAV Photogrammetry Point Clouds
by
Almeida, André
,
Gonçalves, Fabio
,
Silva, Gilson
in
aboveground biomass
,
aerial photogrammetry
,
Aerial photography
2020
Knowing the aboveground biomass (AGB) stock of tropical forests is one of the main requirements to guide programs for reducing emissions from deforestation and forest degradation (REDD+). Traditional 3D products generated with digital aerial photogrammetry (DAP) have shown great potential in estimating AGB, tree density, diameter at breast height, height, and basal area in forest ecosystems. However, these traditional products explore only a small part of the structural information contained in the 3D data, thus not leveraging the full potential of the data for inventory purposes. In this study, we tested the performance of 3D products derived from DAP and a technique based on Fourier transforms of vertical profiles of vegetation to estimate AGB, tree density, diameter at breast height, height, and basal area in a secondary fragment of Atlantic Forest located in northeast Brazil. Field measurements were taken in 30 permanent plots (0.25 ha each) to estimate AGB. At the time of the inventory, we also performed a digital aerial mapping of the entire forest fragment with an unmanned aerial vehicle (UAV). Based on the 3D point clouds and the digital terrain model (DTM) obtained by DAP, vertical vegetation profiles were produced for each plot. Using traditional structure metrics and metrics derived from Fourier transforms of profiles, regression models were fit to estimate AGB, tree density, diameter at breast height, height, and basal area. The 3D DAP point clouds represented the forest canopy with a high level of detail, regardless of the vegetation density. The metrics based on the Fourier transform of profiles were selected as predictors in all models produced. The best model for AGB explained 93% (R2 = 0.93) of the biomass variation at the plot level, with an RMS error of 9.3 Mg ha−1 (22.5%). Similar results were obtained in the models fit for the tree density, diameter at breast height, height, and basal area, with R2 values above 0.90 and RMS errors of less than 18%. The use of Fourier transforms of profiles with 3D products obtained by DAP demonstrated a high potential for estimating AGB and other forest variables of interest in secondary tropical forests, highlighting the value of UAV as a low-cost tool to assist the implementation of REDD+ projects in developing countries like Brazil.
Journal Article