Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,997 result(s) for "Aerosol effects"
Sort by:
An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles
Real-time, online measurements of atmospheric organic aerosol (OA) composition are an essential tool for determining the emissions sources and physicochemical processes governing aerosol effects on climate and health. However, the reliance of current techniques on thermal desorption, hard ionization, and/or separated collection/analysis stages introduces significant uncertainties into OA composition measurements, hindering progress towards these goals. To address this gap, we present a novel, field-deployable extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF), which provides online, near-molecular (i.e., molecular formula) OA measurements at atmospherically relevant concentrations without analyte fragmentation or decomposition. Aerosol particles are continuously sampled into the EESI-TOF, where they intersect a spray of charged droplets generated by a conventional electrospray probe. Soluble components are extracted and then ionized as the droplets are evaporated. The EESI-TOF achieves a linear response to mass, with detection limits on the order of 1 to 10 ng m−3 in 5 s for typical atmospherically relevant compounds. In contrast to conventional electrospray systems, the EESI-TOF response is not significantly affected by a changing OA matrix for the systems investigated. A slight decrease in sensitivity in response to increasing absolute humidity is observed for some ions. Although the relative sensitivities to a variety of commercially available organic standards vary by more than a factor of 30, the bulk sensitivity to secondary organic aerosol generated from individual precursor gases varies by only a factor of 15. Further, the ratio of compound-by-compound sensitivities between the EESI-TOF and an iodide adduct FIGAERO-I-CIMS varies by only ±50 %, suggesting that EESI-TOF mass spectra indeed reflect the actual distribution of detectable compounds in the particle phase. Successful deployments of the EESI-TOF for laboratory environmental chamber measurements, ground-based ambient sampling, and proof-of-concept measurements aboard a research aircraft highlight the versatility and potential of the EESI-TOF system.
Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models
The spatial distribution and properties of submicron organic aerosol (OA) are among the key sources of uncertainty in our understanding of aerosol effects on climate. Uncertainties are particularly large over remote regions of the free troposphere and Southern Ocean, where very few data have been available and where OA predictions from AeroCom Phase II global models span 2 to 3 orders of magnitude, greatly exceeding the model spread over source regions. The (nearly) pole-to-pole vertical distribution of non-refractory aerosols was measured with an aerosol mass spectrometer onboard the NASA DC-8 aircraft as part of the Atmospheric Tomography (ATom) mission during the Northern Hemisphere summer (August 2016) and winter (February 2017). This study presents the first extensive characterization of OA mass concentrations and their level of oxidation in the remote atmosphere. OA and sulfate are the major contributors by mass to submicron aerosols in the remote troposphere, together with sea salt in the marine boundary layer. Sulfate was dominant in the lower stratosphere. OA concentrations have a strong seasonal and zonal variability, with the highest levels measured in the lower troposphere in the summer and over the regions influenced by biomass burning from Africa (up to 10 µg sm−3). Lower concentrations (∼0.1–0.3 µg sm−3) are observed in the northern middle and high latitudes and very low concentrations (<0.1 µg sm−3) in the southern middle and high latitudes. The ATom dataset is used to evaluate predictions of eight current global chemistry models that implement a variety of commonly used representations of OA sources and chemistry, as well as of the AeroCom-II ensemble. The current model ensemble captures the average vertical and spatial distribution of measured OA concentrations, and the spread of the individual models remains within a factor of 5. These results are significantly improved over the AeroCom-II model ensemble, which shows large overestimations over these regions. However, some of the improved agreement with observations occurs for the wrong reasons, as models have the tendency to greatly overestimate the primary OA fraction and underestimate the secondary fraction. Measured OA in the remote free troposphere is highly oxygenated, with organic aerosol to organic carbon (OA ∕ OC) ratios of ∼2.2–2.8, and is 30 %–60 % more oxygenated than in current models, which can lead to significant errors in OA concentrations. The model–measurement comparisons presented here support the concept of a more dynamic OA system as proposed by Hodzic et al. (2016), with enhanced removal of primary OA and a stronger production of secondary OA in global models needed to provide better agreement with observations.
Multidecadal trend analysis of in situ aerosol radiative properties around the world
In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.
Vertical Dependency of Aerosol Impacts on Local Scale Convective Precipitation
Aerosol effects on convective precipitation is critical for understanding human impacts on extreme weather and the hydrological cycle. However, even their signs and magnitude remain debatable. In particular, aerosol effects on vertical structure of precipitation have not been systematically examined yet. Combining 6‐year space‐borne and ground‐based observations over the North China Plain, we show a boomerang‐shape aerosol effect on the top height of convective precipitation, from invigoration to suppression. Further analyses reveal that the aerosols play distinct effects on precipitation rate at different layers. Particularly, near surface precipitation rate shows no significant responses to aerosol and precipitation‐top height due to strong evaporation. The competition of energy between released from condensation and freezing and absorbed by evaporation contributes to different responses of precipitation‐top height to aerosol and can explain the boomerang‐shape aerosol effect. Plain Language Summary Aerosol particles in the atmosphere can alter precipitation efficiency and modulate the hydrological cycle, while their impacts on the cloud and precipitation vertical profiles remain poorly understood. Using 6‐year multi‐source observation data along with reanalysis meteorology, we find that aerosols exert distinct effects on precipitation rate at different layers. The observations show that aerosols enhance precipitation‐top height first and then suppress it under various dynamics and thermodynamics conditions, with a turning point at medium aerosol amount. In contrast, the response of near surface precipitation rate to aerosol perturbation is complex due to varying evaporation efficiency. These findings challenge the previous studies that suggested that the characteristics of cloud and precipitation at high altitude are closely correlated with precipitation rate near the surface. Key Points Observations show a boomerang‐shape aerosol effect on the top height of convective precipitation from invigoration to suppression Aerosols impose distinct effects on precipitation rate at different layers, with no significant impact near surface Energy change within conversion processes between hydrometeors and water vapor explains different responses of precipitation to aerosol
Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr−1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
Direct Radiative Effects of Aerosols on Numerical Weather Forecasts—A Comparison of Two Aerosol Datasets in the NCEP GFS
This study compares aerosol direct radiative effects on numerical weather forecasts made by the NCEP Global Forecast System (GFS) with two different aerosol datasets, the Optical Properties of Aerosols and Clouds (OPAC) and MERRA-2 aerosol climatologies. The underestimation of aerosol optical depth (AOD) by OPAC over northwest Africa, central to East Africa, the Arabian Peninsula, Southeast Asia, and the Indo-Gangetic Plain, and overestimation in the storm-track regions in both hemispheres are reduced by MERRA-2. Surface downward shortwave (SW) and longwave (LW) fluxes and the top-of-the-atmosphere SW and outgoing LW fluxes from model forecasts are compared with CERES satellite observations. Forecasts made with OPAC aerosols have large radiative flux biases, especially in northwest Africa and the storm-track regions. These biases are also reduced in the forecasts made with MERRA-2 aerosols. The improvements from MERRA-2 are most noticeable in the surface downward SW fluxes. GFS medium-range weather forecasts made with the MERRA-2 aerosols demonstrated slightly improved forecast accuracy of sea level pressure and precipitation over the Indian and East Asian summer monsoon region. A stronger Africa easterly jet is produced, associated with a low pressure over the east Atlantic Ocean and west of northwest Africa. Impacts on large-scale skill scores such as 500-hPa geopotential height anomaly correlation are generally positive in the Northern Hemisphere and the Pacific and North American regions in both the winter and summer seasons.
Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements
Representing the number and mass of cloud and aerosol particles independently in a climate, weather prediction or air quality model is important in order to simulate aerosol direct and indirect effects on radiation balance. Here we introduce the first configuration of the UK Met Office Unified Model in which both cloud and aerosol particles have “double-moment” representations with prognostic number and mass. The GLObal Model of Aerosol Processes (GLOMAP) aerosol microphysics scheme, already used in the Hadley Centre Global Environmental Model version 3 (HadGEM3) climate configuration, is coupled to the Cloud AeroSol Interacting Microphysics (CASIM) cloud microphysics scheme. We demonstrate the performance of the new configuration in high-resolution simulations of a case study defined from the CLARIFY aircraft campaign in 2017 near Ascension Island in the tropical southern Atlantic. We improve the physical basis of the activation scheme by representing the effect of existing cloud droplets on the activation of new aerosol, and we also discuss the effect of unresolved vertical velocities. We show that neglect of these two competing effects in previous studies led to compensating errors but realistic droplet concentrations. While these changes lead only to a modest improvement in model performance, they reinforce our confidence in the ability of the model microphysics code to simulate the aerosol–cloud microphysical interactions it was designed to represent. Capturing these interactions accurately is critical to simulating aerosol effects on climate.
Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models
We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against observations.
Elucidating the Role of Anthropogenic Aerosols in Arctic Sea Ice Variations
Observations show that the Arctic sea ice cover has been shrinking at an unprecedented rate since the 1970s. Even though the accumulation of greenhouse gases in the atmosphere has been closely linked with the loss of Arctic sea ice, the role of atmospheric aerosols in past and future Arctic climate change remains elusive. Using a state-of-the-art fully coupled climate model, the authors assess the equilibrium responses of the Arctic sea ice to the different aerosol emission scenarios and investigate the pathways by which aerosols impose their influence in the Arctic. These sensitivity experiments show that the impacts of aerosol perturbations on the pace of sea ice melt effectively modulate the ocean circulation and atmospheric feedbacks. Because of the contrasting evolutions of particulate pollution in the developed and developing countries since the 1970s, the opposite aerosol forcings from different midlatitude regions are nearly canceled out in the Arctic during the boreal summer, resulting in a muted aerosol effect on the recent sea ice changes. Consequently, the greenhouse forcing alone can largely explain the observed Arctic sea ice loss up to the present. In the next few decades, the projected alleviation of particulate pollution in the Northern Hemisphere can contribute up to 20% of the total Arctic sea ice loss and 0.7°C surface warming over the Arctic. The authors’ model simulations further show that aerosol microphysical effects on the Arctic clouds are the major component in the total aerosol radiative forcing over the Arctic. Compared to the aerosol-induced energy imbalance in lower latitudes outside the Arctic, the local radiative forcing by aerosol variations within the Arctic, due to either local emissions or long-range transports, is more efficient in determining the sea ice changes and Arctic climate change.
Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality
Future climate change may worsen air quality in many regions. However, evaluations of this ‘climate penalty’ on air quality have typically not assessed the radiative effects of changes in short-lived aerosols. Additionally, China’s clean air goals will decrease pollutant emissions and aerosol loadings, with concomitant weakening of aerosol feedbacks. Here we assess how such weakened aerosol direct effects alter the estimates of air pollution and premature mortality in China attributable to mid-century climate change under Representative Concentration Pathway 4.5. We found that weakening aerosol direct effects cause boundary layer changes that facilitate diffusion. This reduces air-pollution exposure (~4% in fine particulate matter) and deaths (13,800 people per year), which largely offset the additional deaths caused by greenhouse gas-dominated warming. These results highlight the benefits of reduced pollutant emissions through weakening aerosol direct effects and underline the potential of pollution control measures to mitigate climate penalties locked in by greenhouse gas emissions.Warming harms public health in Chinese cities directly via heat and indirectly by worsening air quality. Climate and epidemiological models estimate that reducing aerosols in a warmer climate can enhance atmospheric ventilation, reduce particulate matter exposure and offset warming-driven deaths.