Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,111 result(s) for "Aerosol transport"
Sort by:
Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest
Quasi‐simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15°N, 23.5°W) and in the far field (Manaus, Amazon basin, Brazil, 2.5°S, 60°W) of the long‐range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long‐distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well‐mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke.
High-Resolution Biomass Burning Aerosol Transport Simulations in the Tropics
This study evaluates the performance of the Weather Research and Forecasting Model with Chemistry (WRF-Chem) for simulating biomass burning aerosol transport at high resolution in the tropics using two different biomass burning emission inventories. Hourly, daily, and monthly average PM10 dry mass concentrations at 5 km resolution—simulated separately using the Brazilian Biomass Burning Emission Model (WRF-3BEM) and the Fire Inventory from NCAR (WRF-FINN) and their averages (WRF-AVG) for 3 months from February to April—are evaluated, using measurements from ground stations distributed in northern Thailand for 2014 and 2015. Results show that WRF-3BEM agrees well with observations and performs much better than WRF-FINN and WRF-AVG. WRF-3BEM simulations are almost unbiased, while those of WRF-FINN and WRF-AVG are significantly overestimated due to significant overestimates of FINN emissions. WRF-3BEM and the measured monthly average PM10 concentrations for all stations and both years are 89.22 and 87.20 μg m−3, respectively. The root mean squared error of WRF-3BEM simulated monthly average PM10 concentrations is 72.00 and 47.01% less than those of WRF-FINN and WRF-AVG, respectively. The correlation coefficient of WRF-3BEM simulated monthly PM10 concentrations and measurements is 0.89. WRF-3BEM can provide useful biomass burning aerosol transport simulations for the northern region of Thailand.
Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.
Aerosols at the Poles: An Aerocom Phase II Multi-Model Evaluation
Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (seasalt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60 degrees N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70 degrees S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m(exp. -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the AeroCom models (GISS modelE) to investigate how regional emissions of BC and sulfate and the lifetime of BC influence the Arctic and Antarctic AOD. A doubling of emissions in eastern Asia results in a 33 percent increase in Arctic AOD of BC. A doubling of the BC lifetime results in a 39 percent increase in Arctic AOD of BC. However, these radical changes still fall within the AeroCom model range.
Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations
We invert global black carbon (BC), organic carbon (OC) and desert dust (DD) aerosol emissions from POLDER/PARASOL spectral aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) using the GEOS-Chem inverse modeling framework. Our inverse modeling framework uses standard a priori emissions to provide a posteriori emissions that are constrained by POLDER/PARASOL AODs and AAODs. The following global emission values were retrieved for the three aerosol components: 18.4 Tg/yr for BC, 109.9 Tg/yr for OC and 731.6 Tg/yr for DD for the year 2010. These values show a difference of +166.7 %, +184.0 % and −42.4 %, respectively, with respect to the a priori values of emission inventories used in “standard” GEOS-Chem runs. The model simulations using a posteriori emissions (i.e., retrieved emissions) provide values of 0.119 for global mean AOD and 0.0071 for AAOD at 550 nm, which are +13.3 % and +82.1 %, respectively, higher than the AOD and AAOD obtained using the a priori values of emissions. Additionally, the a posteriori model simulation of AOD, AAOD, single scattering albedo, Ångström exponent and absorption Ångström exponent show better agreement with independent AERONET, MODIS and OMI measurements than the a priori simulation. Thus, this study suggests that using satellite-constrained global aerosol emissions in aerosol transport models can improve the accuracy of simulated global aerosol properties.
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing
The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and light‐absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosol‐related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (−1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clear‐sky aerosol radiative cooling (−0.15 out of −0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive present‐day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of light‐absorbing impurities in snow/ice. Plain Language Summary Aerosol and aerosol‐cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth System Model version 1 (E3SMv1), a state‐of‐the‐science Earth system model, was developed to use exascale computing to address the grand challenge of actionable predictions of variability and change in the Earth system critical to the energy sector. It has been publicly released with new treatments in many aspects, including substantial modifications to the physical treatments of aerosols in the atmosphere and light‐absorbing impurities in snow/ice, aimed at reducing some known biases or correcting model deficiencies in representing aerosols, their life cycle, and their impacts in various components of the Earth system. Compared to its predecessors (without the new treatments) and observations, E3SMv1 shows improvements in characterizing global distributions of aerosols and their radiative effects. We conduct sensitivity experiments to understand the impact of individual changes and provide guidance for future development of E3SM and other Earth system models. Key Points A description and assessment of new aerosol treatments in the Energy Exascale Earth System Model Version 1 (E3SMv1) is provided Contributions to the total aerosol‐related radiative forcing by individual new treatments and different processes are quantified Some of the new treatments are found to depend on model physics and require further improvement for E3SM or other Earth system models
Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau
The Tibetan Plateau (TP) has recently been polluted by anthropogenic emissions transported from South Asia, but the mechanisms conducive to this aerosol delivery are poorly understood. Here we show that winter loss of Arctic sea ice over the subpolar North Atlantic boosts aerosol transport toward the TP in April, when the aerosol loading is at its climatological maximum and preceding the Indian summer monsoon onset. Low sea ice in February weakens the polar jet, causing decreased Ural snowpack via reduced transport of warm, moist oceanic air into the high-latitude Eurasian interior. This diminished snowpack persists through April, reinforcing the Ural pressure ridge and East Asian trough, segments of a quasi-stationary Rossby wave train extending across Eurasia. These conditions facilitate an enhanced subtropical westerly jet at the southern edge of the TP, invigorating upslope winds that combine with mesoscale updrafts to waft emissions over the Himalayas onto the TP. Aerosol transport from South Asia to the Tibetan Plateau (TP) peaks in the pre-monsoon period, but the controlling dynamics remain unclear. Observational analysis shows that low February Arctic sea ice boosts the Asian subtropical jet in April, which can loft aerosols over the Himalayas onto the TP.
Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
The eastern North Atlantic (ENA) is a region dominated by pristine marine environment and subtropical marine boundary layer clouds. Under unperturbed atmospheric conditions, the regional aerosol regime in the ENA varies seasonally due to different seasonal surface-ocean biogenic emissions, removal processes, and meteorological regimes. However, during periods when the marine boundary layer aerosol in the ENA is impacted by particles transported from continental sources, aerosol properties within the marine boundary layer change significantly, affecting the concentration of cloud condensation nuclei (CCN). Here, we investigate the impact of long-range transported continental aerosol on the regional aerosol regime in the ENA using data collected at the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) user facility on Graciosa Island in 2017 during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We develop an algorithm that integrates number concentrations of particles with optical particle dry diameter (Dp) between 100 and 1000 nm, single scattering albedo, and black carbon concentration to identify multiday events (with duration >24 consecutive hours) of long-range continental aerosol transport in the ENA. In 2017, we detected nine multiday events of long-range transported particles that correspond to ∼ 7.5 % of the year. For each event, we perform HYSPLIT 10 d backward trajectories analysis, and we evaluate CALIPSO aerosol products to assess, respectively, the origins and compositions of aerosol particles arriving at the ENA site. Subsequently, we group the events into three categories, (1) mixture of dust and marine aerosols, (2) mixture of marine and polluted continental aerosols from industrialized areas, and (3) biomass burning aerosol from North America and Canada, and we evaluate their influence on aerosol population and cloud condensation nuclei in terms of potential activation fraction and concentrations at supersaturation of 0.1 % and 0.2 %. The arrival of plumes dominated by the mixture of dust and marine aerosol in the ENA in the winter caused significant increases in baseline Ntot. Simultaneously, the baseline particle size modes and CCN potential activation fraction remained almost unvaried, while cloud condensation nuclei concentrations increased proportionally to Ntot. Events dominated by a mixture of marine and polluted continental aerosols in spring, fall, and winter led to a statistically significant increase in baseline Ntot, a shift towards larger particular sizes, a higher CCN potential activation fractions, and cloud condensation nuclei concentrations of >170 % and up to 240 % higher than during baseline regime. Finally, the transported aerosol plumes characterized by elevated concentration of biomass burning aerosol from continental wildfires detected in the summertime did not statistically contribute to increase baseline aerosol particle concentrations in the ENA. However, particle diameters were larger than under baseline conditions, and CCN potential activation fractions were >75 % higher. Consequentially, cloud concentration nuclei concentrations increased by ∼ 115 % during the period affected by the biomass burning events. Our results suggest that, through the year, multiday events of long-range continental aerosol transport periodically affect the ENA and represent a significant source of CCN in the marine boundary layer. Based on our analysis, in 2017, the multiday aerosol plume transport dominated by a mixture of dust and marine aerosol, a mixture of marine and polluted continental aerosols, and biomass burning aerosols caused increases in the NCCN baseline regime of, respectively, 6.6 %, 8 %, and 7.4 % at SS 0.1 % (and, respectively, 6.5 %, 8.2 %, and 7.3 % at SS 0.2 %) in the ENA.
Transport of Po Valley aerosol pollution to the northwestern Alps – Part 2: Long-term impact on air quality
This work evaluates the impact of trans-regional aerosol transport from the Po basin on particulate matter levels (PM10) and physico-chemical characteristics in the northwestern Alps. To this purpose, we exploited a multi-sensor, multi-platform database over a 3-year period (2015–2017) accompanied by a series of numerical simulations. The experimental setup included operational (24/7) vertically resolved aerosol profiles by an automated lidar ceilometer (ALC), vertically integrated aerosol properties by a Sun/sky photometer, and surface measurements of aerosol mass concentration, size distribution and chemical composition. This experimental set of observations was then complemented by modelling tools, including numerical weather prediction (NWP), trajectory statistical (TSM) and chemical transport (CTM) models, plus positive matrix factorisation (PMF) on both the PM10 chemical speciation analyses and particle size distributions. In a first companion study, we showed and discussed through detailed case studies the 4-D phenomenology of recurrent episodes of aerosol transport from the polluted Po basin to the northwestern Italian Alps. Here we draw more general and statistically significant conclusions on the frequency of occurrence of this phenomenon, and on the quantitative impact of this regular, wind-driven, aerosol-rich “atmospheric tide” on PM10 air-quality levels in this alpine environment. Based on an original ALC-derived classification, we found that an advected aerosol layer is observed at the receptor site (Aosta) in 93 % of days characterized by easterly winds (i.e. from the Po basin) and that the longer the time spent by air masses over the Po plain the higher this probability. Frequency of these advected aerosol layers was found to be rather stable over the seasons with about 50 % of the days affected. Duration of these advection events ranges from few hours up to several days, while aerosol layer thickness ranges from 500 up to 4000 m. Our results confirm this phenomenon to be related to non-local emissions, to act at the regional scale and to largely impact both surface levels and column-integrated aerosol properties. In Aosta, PM10 and aerosol optical depth (AOD) values increase respectively up to factors of 3.5 and 4 in dates under the Po Valley influence. Pollution transport events were also shown to modify the mean chemical composition and typical size of particles in the target region. In fact, increase in secondary species, and mainly nitrate- and sulfate-rich components, were found to be effective proxies of the advections, with the transported aerosol responsible for at least 25 % of the PM10 measured in the urban site of Aosta, and adding up to over 50 µg m−3 during specific episodes, thus exceeding alone the EU established daily limit. From a modelling point of view, our CTM simulations performed over a full year showed that the model is able to reproduce the phenomenon, but markedly underestimates its impact on PM10 levels. As a sensitivity test, we employed the ALC-derived identification of aerosol advections to re-weight the emissions from outside the boundaries of the regional domain in order to match the observed PM10 field. This simplified exercise indicated that an increase in such “external” emissions by a factor of 4 in the model is needed to halve the model PM10 maximum deviations and to significantly reduce the PM10 normalised mean bias forecasts error (from −35 % to 5 %).
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
The co-transport of aerosol particles and water vapor has long been noted in the literature, with a myriad of implications such as air mass characterization, radiative transfer, and data assimilation. Here, the relationship between aerosol optical depth (AOD) and precipitable water vapor (PW) is evaluated to our knowledge for the first time globally, at daily to seasonal levels using approximately 20 years of NASA Aerosol Robotic Network (AERONET) observational data and the 16-year Navy Aerosol Analysis Prediction System (NAAPS) reanalysis v1.0 (NAAPS-RA) model fields. The combination of AERONET observations with small uncertainties and the reanalysis fields with global coverage is used to provide a best estimate of the seasonal AOD and PW relationships, including an evaluation of correlations, slope, and PW probability distributions for identification of statistically significant differences in PW for high-AOD events. The relationships produced from the AERONET and NAAPS-RA datasets were compared against each other and showed consistency, indicating that the NAAPS-RA provides a realistic representation of the AOD and PW relationship. The analysis includes layer AOD and PW relationships for proxies of the planetary boundary layer and the lower, middle, and upper free troposphere. The dominant AOD and PW relationship is positive, supported by both AERONET and model evaluation, which varies in strength by season and location. These relationships were found to be statistically significant and present across the globe, observed on an event-by-event level. Evaluations at individual AERONET sites implicate synoptic-scale transport as a contributing factor in these relationships at daily levels. Negative AOD and PW relationships were identified and predominantly associated with regional dry-season timescales in which biomass burning is the predominant aerosol type. This is not an indication of dry-air association with smoke for an individual event but is a reflection of the overall dry conditions leading to more biomass burning and higher associated AOD values. Stronger correlations between AOD and PW are found when evaluating the data by vertical layers, including the boundary layer and the lower, middle, and upper free troposphere (corresponding to typical water vapor channels), with the largest correlations observed in the free troposphere – indicative of aerosol and water vapor transport events. By evaluating the variability between PW and relative humidity in the NAAPS-RA, hygroscopic growth was found to be a dominant term to (1) amplify positive AOD–PW relationships, particularly in the midlatitudes; (2) diminish negative relationships in dominant biomass burning regions; and (3) lead to statistically insignificant changes in PW for high-AOD events for maritime regions. The importance of hygroscopic growth in these relationships indicates that PW is a useful tracer for AOD or light extinction but not necessarily as strongly for aerosol mass. Synoptic-scale African dust events are an exception where PW is a strong tracer for aerosol transport shown by strong relationships even with hygroscopic effects. Given these results, PW can be exploited in coupled aerosol and meteorology data assimilation for AOD, and the collocation of aerosol and water vapor should be carefully taken into account when conducting particulate matter (PM) retrievals from space and in evaluating radiative impacts of aerosol, with the season and location in mind.