Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11,344
result(s) for
"Agar"
Sort by:
Improved Neisseria gonorrhoeae culture media without atmospheric CO2
by
Snyder, Lori A. S.
,
Menkiti, Chukwuma Jude
in
Agar
,
antibiotic resistance
,
Antimicrobial resistance
2025
Bacterial culture on solid media is the crucial step in diagnosing
Neisseria gonorrhoeae
infections and is the gold standard for determining their antimicrobial resistance profile. However, culture of
Neisseria
spp. can be challenging in resource poor areas, relying on specialist incubators or other methods of supplying 5% CO
2
for growth of the bacteria. Even when such incubators are available, the CO
2
to run them may be scarce; there were CO
2
shortages during the COVID-19 pandemic, for example. Although culture jars with gas packs or candles can be used, these are inefficient in terms of use of incubator space and researcher time. To achieve simplicity in culturing of
N. gonorrhoeae,
the standard Oxoid GC agar base medium, made with the Kellogg’s glucose and iron supplements was improved with the addition of 0.75 g/l sodium bicarbonate (NaHCO
3
), which is inexpensive and readily available. This improved media in a standard incubator performed as well as standard Oxoid GC agar media with supplements in a 5% CO
2
incubator. Chocolate agar and Thayer-Martin agar with sodium bicarbonate were also developed, with all showing good growth of
N. gonorrhoeae
without the need for atmospheric CO
2
.
Key points
• Neisseria spp. (N. gonorrhoeae, N. meningitidis) require atmospheric CO
2
to grow.
• Sources of CO
2
may be scarce depending on geography and lab supply availability.
• We have developed GC, Chocolate, and Thayer-Martin media that does not need CO
2
.
Journal Article
Correlation between Agar Plate Screening and Solid-State Fermentation for the Prediction of Cellulase Production by Trichoderma Strains
2012
The viability of converting biomass into biofuels and chemicals still requires further development towards the reduction of the enzyme production costs. Thus, there is a growing demand for the development of efficient procedures for selection of cellulase-producing microorganisms. This work correlates qualitative screening using agar plate assays with quantitative measurements of cellulase production during cultivation under solid-state fermentation (SSF). The initial screening step consisted of observation of the growth of 78 preselected strains of the genus Trichoderma on plates, using microcrystalline cellulose as carbon source. The 49 strains that were able to grow on this substrate were then subjected to a second screening step using the Congo red test. From this test it was possible to select 10 strains that presented the highest enzymatic indices (EI), with values ranging from 1.51 to 1.90. SSF cultivations using sugarcane bagasse and wheat bran as substrates were performed using selected strains. The CG 104NH strain presented the highest EGase activity (25.93 UI·g−1). The EI results obtained in the screening procedure using plates were compared with cellulase production under SSF. A correlation coefficient (R2) of 0.977 was obtained between the Congo red test and SSF, demonstrating that the two methodologies were in good agreement.
Journal Article
Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract
by
Khutoryanskiy, Vitaliy V
,
Albadran, Hanady A
,
Monteagudo-Mera, Andrea
in
Agar
,
Autoclaving
,
Chitosan
2020
This study reports the development of a novel and simple formulation for probiotic delivery using chitosan-coated agar-gelatin gel particles. This methodology involves the production of agar-gelatin particles by thermally treating a mixture of agar and gelatin solutions at high temperatures (121 °C) and subsequently coating with chitosan. The particles were able to protect the probiotic strain Lactobacillus plantarum NCIMB 8826 during incubation for 2 h in simulated gastric fluid (pH 2), as no statistically significant loss (P > 0.05) in cell concentration was observed, and also resist dissolution in simulated intestinal fluid (pH 7.2). Interestingly, this protection is related to the fact that the intense thermal treatment affected the physicochemical properties of agars and resulted in the formation of a strong and tight polymer network, as indicated by the X-ray diffraction (XRD) analysis. Using an in vitro faecal batch fermentation model simulating the conditions of the distal part of the large intestine (pH 6.7–6.9), it was demonstrated by quantitative real-time PCR that the majority of L. plantarum cells were released from the agar-gelatin particles within 30 to 48 h. Overall, this work led to the development of a novel methodology for the production of probiotic-containing particles, which is simpler compared with current encapsulation technologies and has a lot of potential to be used for the controlled release of probiotics and potentially other solid bioactives in the large intestine.Key Points• Chitosan gel particles is a simple and scalable method of probiotic encapsulation.• Autoclaving agar-gelatin particles increases their stability at low pH.• Chitosan gel particles protected L. plantarum during gastrointestinal conditions.• Probiotics could be controlled release in the colon using chitosan gel particles.
Journal Article
Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H
2017
In this present study, a newly isolated strain,
Streptomyces
sp. NEAE-H, capable of producing high amount of black extracellular melanin pigment on peptone-yeast extract iron agar and identified as
Streptomyces glaucescens
NEAE-H. Plackett–Burman statistical design was conducted for initial screening of 17 independent (assigned) variables for their significances on melanin pigment production by
Streptomyces glaucescens
NEAE-H. The most significant factors affecting melanin production are incubation period, protease-peptone and ferric ammonium citrate. The levels of these significant variables and their interaction effects were optimized by using face-centered central composite design. The maximum melanin production (31.650 μg/0.1 ml) and tyrosinase activity (6089.10 U/ml) were achieved in the central point runs under the conditions of incubation period (6 days), protease-peptone (5 g/L) and ferric ammonium citrate (0.5 g/L). Melanin pigment was recovered by acid-treatment. Higher absorption of the purified melanin pigment was observed in the UV region at 250 nm. It appeared to have defined small spheres by scanning electron microscopy imaging. The maximum melanin yield was 350 mg dry wt/L of production medium.
In vitro
anticancer activity of melanin pigment was assayed against skin cancer cell line using MTT assay. The IC
50
value was 16.34 ± 1.31 μg/ml for melanin and 8.8 ± 0.5 μg/ml for standard 5-fluorouracil.
Journal Article
Agar with embedded channels to study root growth
by
Aziz, Azlan Abdul
,
Lim, Kai Boon
,
Nurmawati, Muhammad Hanafiah
in
631/449/2653
,
639/166/988
,
639/301/923
2020
Agar have long been used as a growth media for plants. Here, we made agar media with embedded fluidic channels to study the effect of exposure to nutrient solution on root growth and pull-out force. Black Eye bean (
Vigna Unguiculata
) and Mung bean (
Vigna Radiata
) were used in this study due to their rapid root development. Agar media were fabricated using casting process with removable cores to form channels which were subsequently filled with nutrient solution. Upon germination, beans were transplanted onto the agar media and allowed to grow. Pull-out force was determined at 96, 120 and 144 h after germination by applying a force on the hypocotyl above the gel surface. The effect of nutrients was investigated by comparing corresponding data obtained from control plants which have not been exposed to nutrient solution. Pull-out force of Black Eye bean plantlets grown in agar with nutrient solution in channels was greater than those grown in gel without nutrients and was 110% greater after 144 h of germination. Pull-out force of Mung bean plantlets grown in agar with and without nutrient solution was similar. Tap root lengths of Black Eye bean and Mung Bean plantlets grown in agar with nutrient solution are shorter than those grown without nutrient.
Journal Article
Human Adipose Stromal Cells (ASC) for the Regeneration of Injured Cartilage Display Genetic Stability after In Vitro Culture Expansion: e77895
2013
Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs) are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.
Journal Article
Enhanced Expression of Long Non-Coding RNA HOTAIR Is Associated with the Development of Gastric Cancer: e77070
2013
The long non-coding RNA HOTAIR has been reported to be a poor prognostic biomarker in a variety of malignant tumors. However, little is known about the association of HOTAIR with gastric cancer. We examined the expression of HOTAIR in 68 gastric cancer samples using quantitative real-time RT-PCR and analyzed its correlation with the clinical parameters. The functional role of HOTAIR was examined by generating human gastric cancer cell lines with increased or suppressed HOTAIR expression. The anchorage -independent growth was assessed by soft agar assay. The increased or suppressed HOTAIR expressing gastric cancer cells were injected into the tail vein or peritoneal cavity of immunodeficient mice to examine the effect of this molecule on metastasis and peritoneal dissemination. The expression of HOTAIR was significantly higher in cancer lesions than in adjacent non-cancerous tissues in human gastric cancers. In the diffuse type of gastric cancer, the High-HOTAIR group (HOTAIR/GAPDH > 1) showed significantly more venous invasion, frequent lymph node metastases and a lower overall survival rate compared to the Low-HOTAIR group (HOTAIR/GAPDH < 1). Colony formation on the soft agar was enhanced in a HOTAIR-dependent manner. HOTAIR-expressing MKN74 formed more liver metastasis compared to control when they were injected into the tail vein of mice. In addition, reduced expression of HOTAIR in KATO III suppressed peritoneal dissemination. These results suggest that HOTAIR plays a pivotal role in the development of gastric cancer.
Journal Article
RNA-Mediated Gene Silencing of Nicotinamide N-Methyltransferase Is Associated with Decreased Tumorigenicity in Human Oral Carcinoma Cells. e71272
2013
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite progress in the treatment of OSCC, overall survival has not improved substantially in the last three decades. Therefore, identification of reliable biomarkers becomes essential to develop effective anti-cancer therapy. In this study, we focused on the enzyme Nicotinamide N-methyltransferase (NNMT), which plays a fundamental role in the biotransformation of many xenobiotics. Although several tumors have been associated with abnormal NNMT expression, its role in cancer cell metabolism remains largely unknown. In this report, 7 human oral cancer cell lines were examined for NNMT expression by Real-Time PCR, Western blot and HPLC-based catalytic assay. Subsequently, we evaluated the in vitro effect of shRNA-mediated silencing of NNMT on cell proliferation. In vivo tumorigenicity of oral cancer cells with stable knockdown of NNMT was assayed by using xenograft models. High expression levels of NNMT were found in PE/CA PJ-15 cells, in keeping with the results of Western blot and catalytic activity assay. PE/CA PJ-15 cell line was stably transfected with shRNA plasmids against NNMT and analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and soft agar Assays. Transfected and control cells were injected into athymic mice in order to evaluate the effect of NNMT silencing on tumor growth. NNMT downregulation resulted in decreased cell proliferation and colony formation ability on soft agar. In athymic mice, NNMT silencing induced a marked reduction in tumour volume. Our results show that the downregulation of NNMT expression in human oral carcinoma cells significantly inhibits cell growth in vitro and tumorigenicity in vivo. All these experimental data seem to suggest that NNMT plays a critical role in the proliferation and tumorigenic capacity of oral cancer cells, and its inhibition could represent a potential molecular approach to the treatment of oral carcinoma.
Journal Article
EMT-Induced Stemness and Tumorigenicity Are Fueled by the EGFR/Ras Pathway. e70427
2013
Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT). However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3-/-p53-/- murine gastric epithelial (GIF-14) cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF- beta 1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF- beta 1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.
Journal Article
Lysyl Oxidase Is Downregulated by the EWS/FLI1 Oncoprotein and Its Propeptide Domain Displays Tumor Supressor Activities in Ewing Sarcoma Cells. e66281
2013
Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the administration of LOX propeptide or functional analogues could be useful for the treatment of this devastating paediatric cancer.
Journal Article