Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Agaricus subrufescens"
Sort by:
Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus
Among the Agaricus genus, both cultivated and wild growing species can be found. In the study, the profile of phenolic compounds and organic acids, as well as ergosterol content of different species of edible Agaricus, was estimated together with a comparison of their ability to scavenge DPPH radicals. The investigation was carried out on seven strains of Agaricus bisporus (one brown and six white), Agaricus blazei, Agaricus arvensis, Agaricus bitorquis, Agaricus campestris and Agaricus silvaticus. Before analysis, the samples were dried. Among nine organic acids detected in Agaricus species, oxalic, lactic and succinic acids were the most abundant. The profile was very heterogeneous with A. silvaticus, A. camperstis and A. arvensis found to be the species richest in organic acids. The phenolic profile revealed only phenolic acids, among which gallic, caffeic and ferulic were detected in all species. The dominant were gallic, trans-cinnamic and chlorogenic acids. The highest sum of phenolic acids and total phenolic content was found in A. brasiliensis. Antiradical of the extracts against DPPH radical was as follows: A. bitorquis > A. arvensis > A. brasiliensis > brown A. bisporus > A. campestris > A. silvaticus > white A. bisporus. The lowest EC50 value was estimated for A. brasiliensis and A. arvensis. A correlation was confirmed between antioxidant activity and phenolic acids. Ergosterol content reached the highest level in A. silvaticus and A. campestris. The investigation emphasizes the value of Agaricus species as a source of different bioactive compounds including phenolic compounds and organic acids.
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew’s ear (black) fungus or black wood ear fungus Auricularia auricula–judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep’s head mushroom Grifola frondosa, lion’s mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese “meshimakobu,” Chinese “song gen,” Korean “sanghwang,” American “black hoof mushroom”), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Antitumor, Anti-inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies
Since the 1980s, medicinal effects have been documented in scientific studies with the related Basidiomycota mushrooms Agaricus blazei Murill (AbM), Hericium erinaceus (HE) and Grifola frondosa (GF) from Brazilian and Eastern traditional medicine. Special focus has been on their antitumor effects, but the mushrooms’ anti-inflammatory and antiallergic properties have also been investigated. The antitumor mechanisms were either direct tumor attack, e.g., apoptosis and metastatic suppression, or indirect defense, e.g., inhibited tumor neovascularization and T helper cell (Th) 1 immune response. The anti-inflammatory mechanisms were a reduction in proinflammatory cytokines, oxidative stress and changed gut microbiota, and the antiallergic mechanism was amelioration of a skewed Th1/Th2 balance. Since a predominant Th2 milieu is also found in cancer, which quite often is caused by a local chronic inflammation, the three conditions—tumor, inflammation and allergy—seem to be linked. Further mechanisms for HE were increased nerve and beneficial gut microbiota growth, and oxidative stress regulation. The medicinal mushrooms AbM, HE and GF appear to be safe, and can, in fact, increase longevity in animal models, possibly due to reduced tumorigenesis and oxidation. This article reviews preclinical and clinical findings with these mushrooms and the mechanisms behind them.
Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens
New species of medicinal mushrooms have emerged over the past several decades, such as the Sun mushroom, Agaricus subrufescens . Horticultural improvements are required to shift its cultivation from small-scale local production to large-scale international production. The research reported here evaluated the agronomic behavior and the chemical characteristics of the Sun mushroom as a function of i) nutritional supplementation ii) ruffling of the casing layer and iii) the temperature management on the primordia induction and reduction of the crop cycle. Supplementation was beneficial for yield, unit mushroom weigh and decrease in time to first harvest. Supplementation improved biological efficiency with Champfood providing a yield increase of 15% over the non-supplemented compost. Among the supplements only Promycel increased the individual mushroom weight. Ruffling overall improved the yield in the 2 nd and 4 th flush. Already biological efficiency was greater by 21%. The highest yield harvested in any single day in the crop occurred in 3 rd flush with the amount of 2.484 kg of mushrooms per m 2 for the rapid induction method. Still the biological efficiency was not significantly affected by the mushroom induction temperature method. Only the fat content of the mushrooms was positively affected by the rapid induction of primordia. Champfood supplement promotes a reduction in the value of earliness and an increase of 1 st flush yield. The ruffling technique provided an increase in biological efficiency due to the great number of mushrooms harvested. Rapid primordia induction allowed the crop cycle to end 3 days earlier than the slow primordia induction, providing a higher production rate.
Agaricus blazei Polysaccharide Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier and Remodeling Metabolism
Ulcerative colitis (UC) is a chronic noninfectious intestinal disease that severely affects patients’ quality of life. Agaricus blazei Murrill polysaccharide (ABP) is an effective active ingredient extracted from Agaricus blazei Murrill (ABM). It has good efficacy in inhibiting tumor cell growth, lowering blood pressure, and improving atherosclerosis. However, its effect on colitis is unclear. The aim of this study was to analyze the protective effects and potential mechanisms of ABP against dextran sulfate sodium (DSS)-induced acute colitis in mice. The results showed that dietary supplementation with ABP significantly alleviated DSS-induced colitis symptoms, inflammatory responses, and oxidative stress. Meanwhile, ABP intervention was able to maintain the integrity of the intestinal mechanical barrier by promoting the expression of ZO-1 and Occludin tight junction proteins and facilitating mucus secretion. Moreover, 16S rRNA sequencing results suggested that ABP intervention was able to alleviate DSS-induced gut microbiota disruption, and nontargeted metabolomics results indicated that ABP was able to remodel metabolism. In conclusion, these results demonstrate that dietary supplementation with ABP alleviated DSS-induced acute colitis by maintaining intestinal barrier integrity and remodeling metabolism. These results improve our understanding of ABP function and provide a theoretical basis for the use of dietary supplementation with ABP for the prevention of ulcerative colitis.
Macrofungal Extracts as a Source of Bioactive Compounds for Cosmetical Anti-Aging Therapy: A Comprehensive Review
For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about the effects of chemical compounds extracted from the fruiting bodies of macrofungi on skin cells were selected. The effects of extracts from nine species that are tested for anti-aging effects have been described. According to available literature data, macrofungi contain many polysaccharides, phenolic compounds, polysaccharide peptides, free amino acids, sterols, proteins, glycosides, triterpenes, alkaloids, which can have an anti-aging effect on the skin by acting as antioxidants, photoprotective, skin whitening, moisturizing, anti-inflammatory and stabilizing collagen, elastin and hyaluronic acid levels in the skin.
Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees
Depending on the infection level and colony strength, Nosema ceranae, a microsporidian endoparasite of the honey bee may have significant consequences on the health, reproduction and productivity of bee colonies. Despite exerting some side effects, fumagillin is most often used for Nosema control. In this study, in a cage experiment, N. ceranae infected bees were treated with fumagillin or the extract of Agaricus blazei mushroom, a possible alternative for Nosema control. Bee survival, Nosema spore loads, the expression levels of immune-related genes and parameters of oxidative stress were observed. Fumagillin treatment showed a negative effect on monitored parameters when applied preventively to non-infected bees, while a noticeable anti-Nosema effect and protection from Nosema-induced immunosuppression and oxidative stress were proven in Nosema-infected bees. However, a protective effect of the natural A. blazei extract was detected, without any side effects but with immunostimulatory activity in the preventive application. The results of this research suggest the potential of A. blazei extract for Nosema control, which needs to be further investigated.
Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China
Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10− 6 (T. matsutake) to 8.61 × 10− 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.
Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells
Background Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. Methods Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. Results The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. Conclusions The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction.
The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation
Sun mushroom is a cultivated mushroom extensively studied for its medicinal properties for several years and literature abounds on the topic. Besides, agronomical aspects were investigated in Brazil, the country the mushroom comes from, and some studies focus on the biology of the fungus. This review aimed to present an overview of the non-medicinal knowledge on the mushroom. Areas of commercial production and marketing trends are presented. Its specific fragrance, taste, nutritional value and potential use of extracts as food additives are compared to those of the most cultivated fungi and laboratory models. The interest of the mushroom for lignocellulosic enzyme production and source of biomolecules for the control of plant pathogens are shown. Investigation of genetic variability among cultivars is reported. Growing and storage of mycelium, as well as cultivation conditions (substrate and casing generally based on local products; indoor and outdoor cultivation; diseases and disorders) are described and compared to knowledge on Agaricus bisporus.[PUBLICATION ABSTRACT]