Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
272,688 result(s) for "Age groups."
Sort by:
Genetic studies of body mass index yield new insights for obesity biology
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci ( P  < 5 × 10 −8 ), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis. A genome-wide association study and Metabochip meta-analysis of body mass index (BMI) detects 97 BMI-associated loci, of which 56 were novel, and many loci have effects on other metabolic phenotypes; pathway analyses implicate the central nervous system in obesity susceptibility and new pathways such as those related to synaptic function, energy metabolism, lipid biology and adipogenesis. Genetic correlates of obesity In the second of two Articles in this issue from the GIANT Consortium, Elizabeth Speliotes and collegues conducted a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), commonly used to define obesity and assess adiposity, to find 97 BMI-associated loci, of which 56 were novel. Many of these loci have significant effects on other metabolic phenotypes. The 97 loci account for about 2.7% of BMI variation, and genome-wide estimates suggest common variation accounts for more than 20% of BMI variation. Pathway analyses implicate the central nervous system in obesity susceptibility including synaptic function, glutamate signaling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Primary Sjögren’s Syndrome of Early and Late Onset: Distinct Clinical Phenotypes and Lymphoma Development
To study the clinical, serological and histologic features of primary Sjögren's syndrome (pSS) patients with early (young ≤35 years) or late (old ≥65 years) onset and to explore the differential effect on lymphoma development. From a multicentre study population of 1997 consecutive pSS patients, those with early or late disease onset, were matched and compared with pSS control patients of middle age onset. Data driven analysis was applied to identify the independent variables associated with lymphoma in both age groups. Young pSS patients (19%, n = 379) had higher frequency of salivary gland enlargement (SGE, lymphadenopathy, Raynaud's phenomenon, autoantibodies, C4 hypocomplementemia, hypergammaglobulinemia, leukopenia, and lymphoma (10.3% vs. 5.7%, p = 0.030, OR = 1.91, 95% CI: 1.11-3.27), while old pSS patients (15%, n = 293) had more frequently dry mouth, interstitial lung disease, and lymphoma (6.8% vs. 2.1%, p = 0.011, OR = 3.40, 95% CI: 1.34-8.17) compared to their middle-aged pSS controls, respectively. In young pSS patients, cryoglobulinemia, C4 hypocomplementemia, lymphadenopathy, and SGE were identified as independent lymphoma associated factors, as opposed to old pSS patients in whom SGE, C4 hypocomplementemia and male gender were the independent lymphoma associated factors. Early onset pSS patients displayed two incidence peaks of lymphoma within 3 years of onset and after 10 years, while in late onset pSS patients, lymphoma occurred within the first 6 years. Patients with early and late disease onset constitute a significant proportion of pSS population with distinct clinical phenotypes. They possess a higher prevalence of lymphoma, with different predisposing factors and lymphoma distribution across time.
Mitigating against relative age effects in youth Track & Field: Validating corrective adjustment procedures across multiple events
With the aim to better identify talented Track & Field performance development, this study estimated the relationships between chronological (decimal) age with 60-m sprint, high jump, triple jump, and pole vault performance. Then, to mitigate against expected Relative Age Effects (RAEs), Corrective Adjustment Procedures (CAPs) were applied to an independent sample. Mixed-longitudinal design examining public data between 2005 and 2019. The performances of 5339 Italian sprinters and jumpers (53.1 %) spanning 11.01–17.99 years of age were examined, with trendlines between chronological age and performance established. Related to an independent sample (N = 40,306; female 45.5 %), trendlines were then utilised to apply CAPs and adjust individual performance. Considering raw and adjusted performance data, RAE distributions were examined for the top 25 % and 10 % performers. For all male and female events, quadratic models best summarised the relationships between chronological age and performance (R2 = 0.74–0.89). When examining independent athletes in similar event, RAEs were more pronounced in males (Cramer's V = 0.35–0.14) than females (Cramer's V = 0.29–0.07). For both sexes, RAE magnitude decreased with age and increased according to performance level (i.e., Top25%–Top10%). However, following CAP applications, RAEs were reduced or removed within annual age groups and performance levels. With RAEs prevalent across Italian youth Track & Field events, findings validate CAPs as a strategy to account for the influence of relative age differences on athletic performance. CAPs help establish a more equitable strategy for performance evaluation and could help improve the efficacy of long-term athlete development programming.