Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
37,592 result(s) for "Age of Information"
Sort by:
Modeling age of information in a cooperative slotted Aloha network
In this paper, we study a slotted Aloha cooperative network where a source node and a relay node send status updates of two underlying stochastic processes to a common destination. Additionally, the relay node cooperates with the source by accepting its packets for further re-transmissions using probabilistic acceptance and relaying. We obtain the exact steady state distributions of Age of Information (AoI) and Peak AoI sequences of both nodes using Quasi-Birth-Death Markov chains. The analytical model is first validated by simulations and then used to obtain optimal cooperation policies when transmission probabilities are fixed. Subsequently, we study the more general problem of joint optimization of the transmission probabilities and cooperation level between the source and relay, with detailed numerical examples.
Implementation and Evaluation of Age-Aware Downlink Scheduling Policies in Push-Based and Pull-Based Communication
As communication systems evolve to better cater to the needs of machine-type applications such as remote monitoring and networked control, advanced perspectives are required for the design of link layer protocols. The age of information (AoI) metric has firmly taken its place in the literature as a metric and tool to measure and control the data freshness demands of various applications. AoI measures the timeliness of transferred information from the point of view of the destination. In this study, we experimentally investigate AoI of multiple packet flows on a wireless multi-user link consisting of a transmitter (base station) and several receivers, implemented using software-defined radios (SDRs). We examine the performance of various scheduling policies under push-based and pull-based communication scenarios. For the push-based communication scenario, we implement age-aware scheduling policies from the literature and compare their performance with those of conventional scheduling methods. Then, we investigate the query age of information (QAoI) metric, an adaptation of the AoI concept for pull-based scenarios. We modify the former age-aware policies to propose variants that have a QAoI minimization objective. We share experimental results obtained in a simulation environment as well as on the SDR testbed.
Distribution of the Age of Gossip in Networks
We study a general setting of gossip networks in which a source node forwards its measurements (in the form of status updates) about some observed physical process to a set of monitoring nodes according to independent Poisson processes. Furthermore, each monitoring node sends status updates about its information status (about the process observed by the source) to the other monitoring nodes according to independent Poisson processes. We quantify the freshness of the information available at each monitoring node in terms of Age of Information (AoI). While this setting has been analyzed in a handful of prior works, the focus has been on characterizing the average (i.e., marginal first moment) of each age process. In contrast, we aim to develop methods that allow the characterization of higher-order marginal or joint moments of the age processes in this setting. In particular, we first use the stochastic hybrid system (SHS) framework to develop methods that allow the characterization of the stationary marginal and joint moment generating functions (MGFs) of age processes in the network. These methods are then applied to derive the stationary marginal and joint MGFs in three different topologies of gossip networks, with which we derive closed-form expressions for marginal or joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. Our analytical results demonstrate the importance of incorporating the higher-order moments of age processes in the implementation and optimization of age-aware gossip networks rather than just relying on their average values.
Joint Optimization of Age of Information and Energy Consumption in NR-V2X System Based on Deep Reinforcement Learning
As autonomous driving may be the most important application scenario of the next generation, the development of wireless access technologies enabling reliable and low-latency vehicle communication becomes crucial. To address this, 3GPP has developed Vehicle-to-Everything (V2X) specifications based on 5G New Radio (NR) technology, where Mode 2 Side-Link (SL) communication resembles Mode 4 in LTE-V2X, allowing direct communication between vehicles. This supplements SL communication in LTE-V2X and represents the latest advancements in cellular V2X (C-V2X) with the improved performance of NR-V2X. However, in NR-V2X Mode 2, resource collisions still occur and thus degrade the age of information (AOI). Therefore, an interference cancellation method is employed to mitigate this impact by combining NR-V2X with Non-Orthogonal multiple access (NOMA) technology. In NR-V2X, when vehicles select smaller resource reservation intervals (RRIs), higher-frequency transmissions use more energy to reduce AoI. Hence, it is important to jointly considerAoI and communication energy consumption based on NR-V2X communication. Then, we formulate such an optimization problem and employ the Deep Reinforcement Learning (DRL) algorithm to compute the optimal transmission RRI and transmission power for each transmitting vehicle to reduce the energy consumption of each transmitting vehicle and the AoI of each receiving vehicle. Extensive simulations demonstrate the performance of our proposed algorithm.
Age of Information Analysis for Multi-Priority Queue and Non-Orthoganal Multiple Access (NOMA)-Enabled Cellular Vehicle-to-Everything in Internet of Vehicles
With the development of Internet of Vehicles (IoV) technology, the need for real-time data processing and communication in vehicles is increasing. Traditional request-based methods face challenges in terms of latency and bandwidth limitations. Mode 4 in cellular vehicle-to-everything (C-V2X), also known as autonomous resource selection, aims to address latency and overhead issues by dynamically selecting communication resources based on real-time conditions. However, semi-persistent scheduling (SPS), which relies on distributed sensing, may lead to a high number of collisions due to the lack of centralized coordination in resource allocation. On the other hand, non-orthogonal multiple access (NOMA) can alleviate the problem of reduced packet reception probability due to collisions. Age of Information (AoI) includes the time a message spends in both local waiting and transmission processes and thus is a comprehensive metric for reliability and latency performance. To address these issues, in C-V2X, the waiting process can be extended to the queuing process, influenced by packet generation rate and resource reservation interval (RRI), while the transmission process is mainly affected by transmission delay and success rate. In fact, a smaller selection window (SW) limits the number of available resources for vehicles, resulting in higher collisions when the number of vehicles is increasing rapidly. SW is generally equal to RRI, which not only affects the AoI part in the queuing process but also the AoI part in the transmission process. Therefore, this paper proposes an AoI estimation method based on multi-priority data type queues and considers the influence of NOMA on the AoI generated in both processes in C-V2X system under different RRI conditions. Our experiments show that using multiple priority queues can reduce the AoI of urgent messages in the queue, thereby providing better service about the urgent message in the whole vehicular network. Additionally, applying NOMA can further reduce the AoI of the messages received by the vehicle.
The Age of Information in Wireless Cellular Systems: Gaps, Open Problems, and Research Challenges
One of the critical use cases for prospective fifth generation (5G) cellular systems is the delivery of the state of the remote systems to the control center. Such services are relevant for both massive machine-type communications (mMTC) and ultra-reliable low-latency communications (URLLC) services that need to be supported by 5G systems. The recently introduced the age of information (AoI) metric representing the timeliness of the reception of the update at the receiver is nowadays commonly utilized to quantify the performance of such services. However, the metric itself is closely related to the queueing theory, which conventionally requires strict assumptions for analytical tractability. This review paper aims to: (i) identify the gaps between technical wireless systems and queueing models utilized for analysis of the AoI metric; (ii) provide a detailed review of studies that have addressed the AoI metric; and (iii) establish future research challenges in this area. Our major outcome is that the models proposed to date for the AoI performance evaluation and optimization deviate drastically from the technical specifics of modern and future wireless cellular systems, including those proposed for URLLC and mMTC services. Specifically, we identify that the majority of the models considered to date: (i) do not account for service processes of wireless channel that utilize orthogonal frequency division multiple access (OFDMA) technology and are able to serve more than a single packet in a time slot; (ii) neglect the specifics of the multiple access schemes utilized for mMTC communications, specifically, multi-channel random access followed by data transmission; (iii) do not consider special and temporal correlation properties in the set of end systems that may arise naturally in state monitoring applications; and finally, (iv) only few studies have assessed those practical use cases where queuing may happen at more than a single node along the route. Each of these areas requires further advances for performance optimization and integration of modern and future wireless provisioning technologies with mMTC and URLLC services.
On Coverage of Critical Nodes in UAV-Assisted Emergency Networks
Unmanned aerial vehicle (UAV)-assisted networks ensure agile and flexible solutions based on the inherent attributes of mobility and altitude adaptation. These features render them suitable for emergency search and rescue operations. Emergency networks (ENs) differ from conventional networks. They often encounter nodes with vital information, i.e., critical nodes (CNs). The efficacy of search and rescue operations highly depends on the eminent coverage of critical nodes to retrieve crucial data. In a UAV-assisted EN, the information delivery from these critical nodes can be ensured through quality-of-service (QoS) guarantees, such as capacity and age of information (AoI). In this work, optimized UAV placement for critical nodes in emergency networks is studied. Two different optimization problems, namely capacity maximization and age of information minimization, are formulated based on the nature of node criticality. Capacity maximization provides general QoS enhancement for critical nodes, whereas AoI is focused on nodes carrying critical information. Simulations carried out in this paper aim to find the optimal placement for each problem based on a two-step approach. At first, the disaster region is partitioned based on CNs’ aggregation. Reinforcement learning (RL) is then applied to observe optimal placement. Finally, network coverage over optimal UAV(s) placement is studied for two scenarios, i.e., network-centric and user-centric. In addition to providing coverage to critical nodes, the proposed scheme also ensures maximum coverage for all on-scene available devices (OSAs).
A Cascaded Multi-Agent Reinforcement Learning-Based Resource Allocation for Cellular-V2X Vehicular Platooning Networks
The platooning of cars and trucks is a pertinent approach for autonomous driving due to the effective utilization of roadways. The decreased gas consumption levels are an added merit owing to sustainability. Conventional platooning depended on Dedicated Short-Range Communication (DSRC)-based vehicle-to-vehicle communications. The computations were executed by the platoon members with their constrained capabilities. The advent of 5G has favored Intelligent Transportation Systems (ITS) to adopt Multi-access Edge Computing (MEC) in platooning paradigms by offloading the computational tasks to the edge server. In this research, vital parameters in vehicular platooning systems, viz. latency-sensitive radio resource management schemes, and Age of Information (AoI) are investigated. In addition, the delivery rates of Cooperative Awareness Messages (CAM) that ensure expeditious reception of safety-critical messages at the roadside units (RSU) are also examined. However, for latency-sensitive applications like vehicular networks, it is essential to address multiple and correlated objectives. To solve such objectives effectively and simultaneously, the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework necessitates a better and more sophisticated model to enhance its ability. In this paper, a novel Cascaded MADDPG framework, CMADDPG, is proposed to train cascaded target critics, which aims at achieving expected rewards through the collaborative conduct of agents. The estimation bias phenomenon, which hinders a system’s overall performance, is vividly circumvented in this cascaded algorithm. Eventually, experimental analysis also demonstrates the potential of the proposed algorithm by evaluating the convergence factor, which stabilizes quickly with minimum distortions, and reliable CAM message dissemination with 99% probability. The average AoI quantity is maintained within the 5–10 ms range, guaranteeing better QoS. This technique has proven its robustness in decentralized resource allocation against channel uncertainties caused by higher mobility in the environment. Most importantly, the performance of the proposed algorithm remains unaffected by increasing platoon size and leading channel uncertainties.
Peak Age of Information Analysis in Systems with Multiple Time-Correlated Traffic Streams
Nowadays, Internet of Things (IoT) is one of the most dynamically evolving services in the 5G ecosystem. In industrial IoT (IIoT), this service can be utilized to deliver state updates of various equipment to the remote control center for further coordination and maintenance. As a result, one of the critical metrics of interest for such a service is the Age of Information (AoI) and its upper bound—peak AoI (AoI)—characterizing the freshness of information about the state of the systems. In spite of significant attention, these metrics received over the last decade, only little is known regarding the PAoI performance of a single source (e.g., sensor) in the presence of competing traffic from other sources in queuing systems. On top of this, models with batch arrivals and batch services that can be effectively used to represent service performance in modern cellular systems such as 5G New Radio are lacking. In our study, we consider a cellular air interface representing it as a queuing system (QS) in discrete-time with batch arrivals and service and investigate performance of a single (tagged) source in presence of competing traffic from other sources having the same priority, where all the sources are modeled using the switched Poisson process (SPP) characterized by sophisticated correlational properties. We also investigated the impact of several service disciplines on the performance of the tagged source including first-come–first-served (FCFS), last-come–first-served (LCFS), random, and priority-based service. Our results illustrate that, although the qualitative behavior of the mean PAoI is different for different service disciplines, the optimal value of PAoI is insensitive to the choice of the service order. On top of this, we observed that introducing a priority in service to one of the flows may drastically affect the performance of other flows even when the overall load contribution of a single flow is rather limited. Our observations can be utilized to design packet scheduling strategies for 4G/5G cellular systems carrying traffic of state update applications.
A Power-Aware 5G Network Slicing Scheme for IIoT Systems with Age Tolerance
Network slicing has emerged as a pivotal technology in addressing the diverse customization requirements of the Industrial Internet of Things (IIoT) within 5G networks, enabling the deployment of multiple logical networks over shared infrastructure. Efficient resource management in this context is essential to ensure energy efficiency and meet the stringent real-time demands of IIoT applications. This study focuses on the scheduling problem of minimizing average transmission power while maintaining Age of Information (AoI) tolerance constraints within 5G wireless network slicing. To tackle this challenge, an improved Dueling Double Deep Q-Network (D3QN) is leveraged to devise intelligent slicing schemes that dynamically allocate resources, ensuring optimal performance in time-varying wireless environments. The proposed improved D3QN approach introduces a novel heuristic-based exploration strategy that restricts action choices to the most effective options, significantly; reducing ineffective learning steps. The simulation results show that the method not only speeds up convergence considerably but also achieves lower transmit power while preserving strict AoI reliability constraints and slice isolation.