Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,117
result(s) for
"Aging (artificial)"
Sort by:
A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics
2021
Most of the analytical studies focused on microplastics (MPs) are based on the detection and identification of the polymers constituting the particles. On the other hand, plastic debris in the environment undergoes chemical and physical degradation processes leading not only to mechanical but also to molecular fragmentation quickly resulting in the formation of leachable, soluble and/or volatile degradation products that are released in the environment. We performed the analysis of reference MPs–polymer micropowders obtained by grinding a set of five polymer types down to final size in the 857–509 μm range, namely high- and low-density polyethylene, polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET). The reference MPs were artificially aged in a solar-box to investigate their degradation processes by characterizing the aged (photo-oxidized) MPs and their low molecular weight and/or highly oxidized fraction. For this purpose, the artificially aged MPs were subjected to extraction in polar organic solvents, targeting selective recovery of the low molecular weight fractions generated during the artificial aging. Analysis of the extractable fractions and of the residues was carried out by a multi-technique approach combining evolved gas analysis–mass spectrometry (EGA–MS), pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS), and size exclusion chromatography (SEC). The results provided information on the degradation products formed during accelerated aging. Up to 18 wt% of extractable, low molecular weight fraction was recovered from the photo-aged MPs, depending on the polymer type. The photo-degradation products of polyolefins (PE and PP) included a wide range of long chain alcohols, aldehydes, ketones, carboxylic acids, and hydroxy acids, as detected in the soluble fractions of aged samples. SEC analyses also showed a marked decrease in the average molecular weight of PP polymer chains, whereas cross-linking was observed in the case of PS. The most abundant low molecular weight photo-degradation products of PS were benzoic acid and 1,4-benzenedicarboxylic acid, while PET had the highest stability towards aging, as indicated by the modest generation of low molecular weight species.
Journal Article
Transcriptome-Wide Characterization of Seed Aging in Rice: Identification of Specific Long-Lived mRNAs for Seed Longevity
2022
Various long-lived mRNAs are stored in seeds, some of which are required for the initial phase of germination and are critical to seed longevity. However, the seed-specific long-lived mRNAs involved in seed longevity remain poorly understood in rice. To identify these mRNAs in seeds, we first performed aging experiment with 14 rice varieties, and categorized them as higher longevity (HL) and lower longevity (LL) rice varieties in conventional rice and hybrid rice, respectively. Second, RNA-seq analysis showed that most genes showed similar tendency of expression changes during natural and artificial aging, suggesting that the effects of these two aging methods on transcription are comparable. In addition, some differentially expressed genes (DEGs) in the HL and LL varieties differed after natural aging. Furthermore, several specific long-lived mRNAs were identified through a comparative analysis of HL and LL varieties after natural aging, and similar sequence features were also identified in the promoter of some specific long-lived mRNAs. Overall, we identified several specific long-lived mRNAs in rice, including gibberellin receptor gene GID1 , which may be associated with seed longevity.
Journal Article
Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean (Glycine max L. Merr.) Seed Aging
2022
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Journal Article
Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al–Si–Cu Alloy
2021
The precipitation of intermetallic phases and the associated hardening by artificial aging treatments at elevated temperatures above 400 °C were systematically investigated in the commercially available AC2B alloy with a nominal composition of Al–6Si–3Cu (mass%). The natural age hardening of the artificially aged samples at various temperatures was also examined. A slight increase in hardness (approximately 5 HV) of the AC2B alloy was observed at an elevated temperature of 480 °C. The hardness change is attributed to the precipitation of metastable phases associated with the α-Al15(Fe, Mn)3Si2 phase containing a large amount of impurity elements (Fe and Mn). At a lower temperature of 400 °C, a slight artificial-age hardening appeared. Subsequently, the hardness decreased moderately. This phenomenon was attributed to the precipitation of stable θ-Al2Cu and Q-Al4Cu2Mg8Si6 phases and their coarsening after a long duration. The precipitation sequence was rationalized by thermodynamic calculations for the Al–Si–Cu–Fe–Mn–Mg system. The natural age-hardening behavior significantly varied depending on the prior artificial aging temperatures ranging from 400 °C to 500 °C. The natural age-hardening was found to strongly depend on the solute contents of Cu and Si in the Al matrix. This study provides fundamental insights into controlling the strength level of commercial Al–Si–Cu cast alloys with impurity elements using the cooling process after solution treatment at elevated temperatures above 400 °C.
Journal Article
The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices
by
Metin, Dilan Seda
,
Beuer, Florian
,
Saadat Sarmadi, Bardia
in
3-D printers
,
Accuracy
,
Additive manufacturing
2024
The aim of this study is to investigate the influence of printing material, build angle, and artificial aging on the accuracy of SLA- and DLP-printed occlusal devices in comparison to each other and to subtractively manufactured devices. A total of 192 occlusal devices were manufactured by one SLA-printing and two DLP-printing methods in 5 different build angles as well as milling. The specimens were scanned and superimposed to their initial CAD data and each other to obtain trueness and precision data values. A second series of scans were performed after the specimens underwent an artificial aging simulation by thermocycling. Again, trueness and precision were investigated, and pre- and post-aging values were compared. A statistically significant influence was found for all main effects: manufacturing method, build angle, and thermocycling, confirmed by two-way ANOVA. Regarding trueness, overall tendency indicated that subtractively manufactured splints were more accurate than the 3D-printed, with mean deviation values around ±0.15 mm, followed by the DLP1 group, with ±0.25 mm at 0 degree build angle. Within the additive manufacturing methods, DLP splints had significantly higher trueness for all build angles compared to SLA, which had the highest mean deviation values, with ±0.32 mm being the truest to the original CAD file. Regarding precision, subtractive manufacturing showed better accuracy than additive manufacturing. The artificial aging demonstrated a significant influence on the dimensional accuracy of only SLA-printed splints.
Journal Article
Relationships between welding parameters, aging conditions, and weld properties in AA7075-T6 friction stir welds
2020
The influence of processing parameters and several combinations of natural as well as artificial aging on the mechanical properties of friction stir welded AA7075-T6 is analyzed in the present investigation. Different sets of welding parameters were employed to obtain joints characterized by different peak temperatures and thermal cycles. The joint obtained with the highest welding speed has guaranteed the best mechanical properties. The latter were shown to be strongly correlated to heat input, which influences both densities of dislocations in nugget zone grains and growth and dissolution of strengthening precipitates in the heat-affected zone that establish the mechanical characteristics of friction stir welds. On the other hand, artificial aging has drastically reduced the strain at break due to strain localization in the heat affected zones while it has proved its effectiveness in stabilizing the mechanical properties when exposed to further natural aging at room temperature.
Journal Article
Uncovering changes in mulberry brandy during artificial aging using flavoromics
2024
The addition of oak chips is one of the basic techniques for artificial aging of brandy, but its effect on mulberry brandy flavor is unknown. In this study, the effect of oak chips addition on the aging of mulberry brandy and the evolution of volatile compounds during the aging process were investigated using flavoromics techniques. The results showed that the 15 g/l oak chips had the highest ethyl acetate content and the highest sensory scores at 30 °C aging conditions, with the tannin and total phenol contents at 233.7 ± 6.4 mg/l and 15.83 ± 1.18 mg/l, respectively. Through Partial least squares discriminant analysis (PLS-DA) and correlation analysis, 12 essential compounds during aging were identified, among which Ethyl acetate, Whiskey lactone, Furfural, and Vanillin also showed a positive correlation with aroma intensity, positively influencing the quality of mulberry brandy, resulting in a richer brandy flavor. The results of the study provide a theoretical basis and reference for the artificial aging technology of mulberry brandy.
Journal Article
Cytological structures and physiological and biochemical characteristics of covered oat (Avena sativa L.) and naked oat (Avena nuda L.) seeds during high-temperature artificial aging
2024
Background
Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged ‘LongYan No. 3’ (
A. sativa
) and ‘BaiYan No. 2’ (
A. nuda
) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats.
Results
In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. ‘LongYan No. 3’ seeds, aged for 24–96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the ‘BaiYan No. 2’. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of ‘LongYan No. 3’ seed vitality and value. Conversely, ‘BaiYan No. 2’ seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum.
Conclusions
ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. ‘LongYan No. 3’ seeds were more severely damaged under artificial aging than ‘BaiYan No. 2’ seeds, highlighting their heightened susceptibility to aging effects.
Journal Article
Optical Properties and Color Stability of Dental PEEK Related to Artificial Ageing and Staining
by
Porojan, Liliana
,
Porojan, Sorin Daniel
,
Topală, Florin-Ionel
in
Aging
,
Aging (artificial)
,
Aging (natural)
2021
Considering that the processes of PEEK discoloration caused by either intrinsic or extrinsic factors require elucidation, the aim of this study was to investigate the long-term effect of the combined action of ageing and immersing solutions on the optical properties and color stability of PEEK material, related to surface processing (polishing or glazing). (2) Methods: This study aims to determine the influence of different ageing and staining protocols on optical properties, color changes, and surface roughness of a reinforced PEEK material (bioHPP, Bredent, Senden, Germany). For ageing, specimens were submitted to 5000 cycles in a 55 °C bath and a 5 °C bath filled with distilled water. For staining, thermal cycling was performed in a hot coffee bath (55 °C) and a bath filled with distilled water (37 °C) and in a cold juice bath (5 °C) and a bath filled with distilled water (37 °C). Translucency (TP) and opalescence (OP) parameters were determined, the total color change value (ΔΕ*) was calculated, specimens’ surface roughness was analyzed, and statistical analyses were performed. (3) Results: The mean TP values of the studied samples were in the interval of 1.25–3.60, which is lower than those reported for natural teeth or other aesthetic restoration materials. The OP values of PEEK were registered in the range of 0.27–0.75, being also lower than those of natural teeth or other aesthetic restoration materials. OP has a very strong positive relationship with TP. The mean registered Ra values for all subgroups were below 0.13 µm. Artificial ageing and staining in hot coffee proved to increase the roughness values. (4) Conclusions: The glazing of PEEK has a favorable effect on surface roughness and opalescence, irrespective of the artificial ageing or staining protocols. Artificial ageing damages the color stability and roughness of PEEK, regardless of surface processing, and decreases the translucency and opalescence of glazed surfaces. Immersion in hot coffee leads to perceivable discolorations.
Journal Article
Influence of different rolling processes on the microstructures and mechanical properties of 6016 aluminum alloy
2023
The influence laws of two different rolling processes on the microstructures and properties of 6016 aluminum alloys in rolling, T4, T4P states, and aging are studied, respectively. The microstructures under different rolling processes are also analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). The results indicate that during the cold rolling process, compared with B alloy, A alloy generated small initial grains. The small initial grains will increase the deformation resistance, and the strength and hardness of A alloy are better after rolling, but with poor plasticity. After solution treatment, A alloy generated small grains with recrystallization, the hardness, plasticity, and formability of A alloy in T4 state are better than B alloy after solution treatment and natural aging. A alloy is more sensitive to aging response, and artificial aging occurs during the pre-aging process. The proportion of large Angle grain boundaries in A alloy is large but with small dislocation density, uneven distribution, and small texture content. This makes A alloy have better strength and hardness in T4P and poor plasticity and formability than B alloy after solution treatment, pre-aging and natural aging. However, the strength and hardness of A alloy are also smaller than that of alloy B after artificial aging.
Journal Article