Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3,018 result(s) for "Agricultural industries India."
Sort by:
Agri-input marketing in India
Agri-input companies have played a significant role in transforming the post-Independence \"ship-to-mouth\" Indian economy, dependent on food grain imports, into a self-sufficient economy. Though agricultural productivity is declining and environmentalists are questioning the use of agri-inputs, Indian agriculture cannot do away with agri-inputs. This book, after understanding the past policy environment, agri-input marketing, and promotion strategies of both the government and private companies, suggests frameworks for agri-input marketing companies to align their strategies to the new objective of sustainable agriculture. The book will serve as a text for students in the agribusiness management programmes and also as a guide for practicing managers and policy makers.
Inclusive value chains
“Modern” integrated value chains need not necessarily exclude the smallest producers as this book aims to explain in detail by case studies. The issue is particularly topical in India, where modern retailing has come to the scene only recently and the majority of whose population are still small farmers and artisans. Following a brief introduction to the problem, 14 case studies from India are presented to illustrate how it is being solved in practice. The book also discusses the impact of organized retailing on small-scale traders, and finally analyses the case studies for an overview, with conclusions and learnings drawn from them. Inclusive Value Chains shows by practical examples that it is possible to link the smallest producers of fresh produce, commodities and handicrafts profitably, to modern integrated markets, within the country of origin as well as abroad.
Inclusive Value Chains
Key Features:Reviews 14 detailed case studies of value chains that include the poorest producers and which are profitable for everyoneStudies products including fresh produce, food grains, forest products, fish, poultry and handicrafts, featuring producers from various states/provinces of IndiaAnalyses the examples to help reader understand which types of inclusive value chains work and which do not.
Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health
Heavy metals and metalloids (HMs) are environmental pollutants, most notably cadmium, lead, arsenic, mercury, and chromium. When HMs accumulate to toxic levels in agricultural soils, these non-biodegradable elements adversely affect crop health and productivity. The toxicity of HMs on crops depends upon factors including crop type, growth condition, and developmental stage; nature of toxicity of the specific elements involved; soil physical and chemical properties; occurrence and bioavailability of HM ions in the soil solution; and soil rhizosphere chemistry. HMs can disrupt the normal structure and function of cellular components and impede various metabolic and developmental processes. This review evaluates: (1) HM contamination in arable lands through agricultural practices, particularly due to chemical fertilizers, pesticides, livestock manures and compost, sewage-sludge-based biosolids, and irrigation; (2) factors affecting the bioavailability of HM elements in the soil solution, and their absorption, translocation, and bioaccumulation in crop plants; (3) mechanisms by which HM elements directly interfere with the physiological, biochemical, and molecular processes in plants, with particular emphasis on the generation of oxidative stress, the inhibition of photosynthetic phosphorylation, enzyme/protein inactivation, genetic modifications, and hormonal deregulation, and indirectly through the inhibition of soil microbial growth, proliferation, and diversity; and (4) visual symptoms of highly toxic non-essential HM elements in plants, with an emphasis on crop plants. Finally, suggestions and recommendations are made to minimize crop losses from suspected HM contamination in agricultural soils.
Epic narratives of the Green Revolution in Brazil, China, and India
The Green Revolution is often seen as epitomising the dawn of scientific and technological advancement and modernity in the agricultural sector across developing countries, a process that unfolded from the 1940s through to the 1980s. Despite the time that has elapsed, this episode of the past continues to resonate today, and still shapes the institutions and practices of agricultural science and technology. In Brazil, China, and India, narratives of science-led agricultural transformations portray that period in glorifying terms—entailing pressing national imperatives, unprecedented achievements, and heroic individuals or organizations. These “epic narratives” draw on the past to produce meaning and empower the actors that deploy them. Epic narratives are reproduced over time and perpetuate a conviction about the heroic power of science and technology in agricultural development. By crafting history and cultivating a sense of scientific nationalism, exceptionalism, and heritage, these epic narratives sustain power-knowledge relations in agricultural science and technology, which are underpinned by a hegemonic modernization paradigm. Unravelling the processes of assemblage and reproduction of epic narratives helps us make sense of how science and technology actors draw on their subjective representations of the past to assert their position in the field at present. This includes making claims about their credentials to envision and deliver sustainable solutions for agriculture into the future.
Impact, adaptation, and mitigation of climate change in Indian agriculture
Climate change poses serious risks to Indian agriculture as half of the agricultural land of the country is rainfed. Climate change affects crop yield, soil processes, water availability, and pest dynamics. Several adaptation strategies such as heat- and water stress-tolerant crop varieties, stress-tolerant new crops, improved agronomic management practices, improved water use efficiency, conservation agriculture practices and improved pest management, improved weather forecasts, and other climate services are in place to minimize the climatic risks. The agriculture sector contributes 14% of the greenhouse gas (GHG) from the country. Mitigation of GHG emission from agriculture can be achieved by changing land-use management practices and enhancing input-use efficiency. Experiments in India showed that methane emission from lowland rice fields can be reduced by 40–50% with alternate wetting and drying (AWD), growing shorter duration varieties, and using neem-coated urea according to soil health card (SHC) and leaf color chart (LCC). Dry direct-seeding of rice, which does not require continuous soil submergence, can reduce methane emission by 70–75%. Sequestration of carbon (C) in agricultural soil can be promoted with the application of organic manure, crop residues, and balanced nutrients. India has taken several proactive steps for addressing the issues of climate change in agriculture. Recently, it has also committed for reducing GHG emission intensity by 45% by 2030 and achieving net zero emission by 2070. The paper discusses the major impacts of climate change, potential adaptation, and mitigation options and the initiatives of Govt. of India in making Indian agriculture climate-smart.
Global Patterns of Resistance to Bt Crops Highlighting Pink Bollworm in the United States, China, and India
Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have advanced pest control, but their benefits have been reduced by evolution of resistance in pests.The global monitoring data reviewed here reveal 19 cases of practical resistance to Bt crops, which is field-evolved resistance that reduces Bt crop efficacy and has practical consequences for pest control. Each case represents the responses of one pest species in one country to one Bt toxin. The results with pink bollworm (Pectinophora gossypiella) and Bt cotton differ strikingly among the world's three leading cotton-producing nations. In the southwestern United States, farmers delayed resistance by planting non-Bt cotton refuges from 1996 to 2005, then cooperated in a program that used Bt cotton, mass releases of sterile moths, and other tactics to eradicate this pest from the region. In China, farmers reversed low levels of pink bollworm resistance to Bt cotton by planting second-generation hybrid seeds from crosses between Bt and non-Bt cotton. This approach yields a refuge of 25% non-Bt cotton plants randomly interspersed within fields of Bt cotton. Farmers adopted this tactic voluntarily and unknowingly, not to manage resistance, but apparently because of its perceived short-term agronomic and economic benefits. In India, where non-Bt cotton refuges have been scarce and pink bollworm resistance to pyramided Bt cotton producing Cry1Ac and Cry2Ab toxins is widespread, integrated pest management emphasizing shortening of the cotton season, destruction of crop residues, and other tactics is now essential.
Composting Processes for Agricultural Waste Management: A Comprehensive Review
Composting is the most adaptable and fruitful method for managing biodegradable solid wastes; it is a crucial agricultural practice that contributes to recycling farm and agricultural wastes. Composting is profitable for various plant, animal, and synthetic wastes, from residential bins to large corporations. Composting and agricultural waste management (AWM) practices flourish in developing countries, especially Pakistan. Composting has advantages over other AWM practices, such as landfilling agricultural waste, which increases the potential for pollution of groundwater by leachate, while composting reduces water contamination. Furthermore, waste is burned, open-dumped on land surfaces, and disposed of into bodies of water, leading to environmental and global warming concerns. Among AWM practices, composting is an environment-friendly and cost-effective practice for agricultural waste disposal. This review investigates improved AWM via various conventional and emerging composting processes and stages: composting, underlying mechanisms, and factors that influence composting of discrete crop residue, municipal solid waste (MSW), and biomedical waste (BMW). Additionally, this review describes and compares conventional and emerging composting. In the conclusion, current trends and future composting possibilities are summarized and reviewed. Recent developments in composting for AWM are highlighted in this critical review; various recommendations are developed to aid its technological growth, recognize its advantages, and increase research interest in composting processes.
Groundwater depletion embedded in international food trade
Global food consumption drives irrigation for crops, which depletes aquifers in some regions; here we quantify the volumes of groundwater depletion associated with global food production and international trade. International food trade causes water depletion (Dalin 21403, Phys Letter) International trade is increasingly transporting 'hidden' resources and environmental factors from one country to another. For example, the water used to produce a spear of asparagus eaten in London might come from irrigation in South America. Similarly, pollution generated in China might be traceable to consumer demand in the United States. Carole Dalin et al . now extend this idea to the non-renewable groundwater that is consumed for agricultural trade. They find that 11 per cent of groundwater extraction is linked to agricultural trade, with Pakistan, the United States and India accounting for two-thirds of the global totals. The research reveals the degree to which food consumption in one country can lead to groundwater depletion in others, highlighting the need to better consider issues of sustainability and equity in the international food trade. Recent hydrological modelling 1 and Earth observations 2 , 3 have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation 1 , 2 , 4 , but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.
Does caste determine farmer access to quality information?
This paper explores the social inclusiveness of agricultural extension services in India. We estimate the probability and frequency of farmers' access to extension services and resulting changes in crop income across different caste groups. The literature suggests that caste-based social segregation manifests in various spheres of life, and perpetuates economic inequality and oppression. An econometric analysis of nationally-representative data from rural India verifies this with respect to the agricultural sector. Farmers belonging to the socially-marginalized castes are found to have a lower chance of accessing the public extension services, primarily due to their inferior resource-endowment status. Contacting extension agents at least once increased the average annual crop income by about 12 thousand Indian rupees per household, which is equivalent to 36% of the annual crop income of those without access to extension services. There exists significant impact heterogeneity. Farmers from the socially-marginalized castes hardly benefited from accessing the extension services. Based on these observations, we have developed a number of policy recommendations that could improve the social inclusiveness of agricultural development strategies in rural India.