Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
71,475
result(s) for
"Air flow"
Sort by:
A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning
by
Ji, Conghua
,
Liu, Shan
,
Wu, Hanting
in
Aerosols
,
Air conditioning
,
Air Conditioning - instrumentation
2021
To evaluate (1) the relationship between heating, ventilation, and air conditioning (HVAC) systems and bioaerosol concentrations in hospital rooms, and (2) the effectiveness of laminar air flow (LAF) and high efficiency particulate air (HEPA) according to the indoor bioaerosol concentrations.
Databases of Embase, PubMed, Cochrane Library, MEDLINE, and Web of Science were searched from 1st January 2000 to 31st December 2020. Two reviewers independently extracted data and assessed the quality of the studies. The samples obtained from different areas of hospitals were grouped and described statistically. Furthermore, the meta-analysis of LAF and HEPA were performed using random-effects models. The methodological quality of the studies included in the meta-analysis was assessed using the checklist recommended by the Agency for Healthcare Research and Quality.
The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3. Meanwhile, the indoor bacterial concentration of LAF systems decreased by 40.05 (95% CI: -55.52, -24.58) CFU/m3 compared to that of conventional HVAC systems.
The HVAC systems in hospitals can effectively remove bioaerosols. Further, the use of HEPA filters is an effective option for areas that are under-ventilated and require additional protection. However, other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi.
Although our study analysed the overall trend of indoor bioaerosols, the conclusions cannot be extrapolated to rare, hard-to-culture, and highly pathogenic species, as well as species complexes. These species require specific culture conditions or different sampling requirements. Investigating the effects of HVAC systems on these species via conventional culture counting methods is challenging and further analysis that includes combining molecular identification methods is necessary.
Our study was the first meta-analysis to evaluate the effect of HVAC systems on indoor bioaerosols through microbial incubation count. Our study demonstrated that HVAC systems could effectively reduce overall bioaerosol concentrations to maintain better indoor air quality. Moreover, our study provided further evidence that other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi.
Our research showed that HEPA filters are more effective at removing bioaerosols in HVAC systems than the current LAF system. Therefore, instead of opting for the more costly LAF system, a filter with a higher filtration rate would be a better choice for indoor environments that require higher air quality; this is valuable for operating room construction and maintenance budget allocation.
Journal Article
Laminar air flow reduces particle load in TKA—even outside the LAF panel: a prospective, randomized cohort study
2021
Purpose
Released particles are a major risk of airborne contamination during surgery. The present prospective study investigated the quantitative and qualitative particle load in the operating room (OR) depending on location, time of surgery and use of laminar air flow (LAF) system.
Methods
The particle load/m
3
was measured during the implantation of 12 total knee arthroplasties (6 × LAF, 6 × Non-LAF) by using the Met One HHPC 6 + device (Beckmann Coulter GmbH, Germany). Measurement was based on the absorption and scattering of (laser) light by particles and was performed at three different time-points [empty OR, setting up, ongoing operation) at 3 fixed measurement points [OR table (central LAF area), anaesthesia tower (marginal LAF area), surgical image amplifier (outside LAF area)].
Results
Independent of time and location, all measurements showed a significantly higher particle load in the Non-LAF group (
p
< 0.01). With ongoing surgical procedure both groups showed increasing particle load. While there was a major increase of fine particles (size < 1 µm) with advancing activity in the LAF group, the Non-LAF group showed higher particle gain with increasing particle size. The lowest particle load in the LAF group was measured at the operating column, increasing with greater distance from the operating table. The Non-LAF group presented a significantly higher particle load than the LAF group at all locations.
Conclusion
The use of a LAF system significantly reduces the particle load and therefore potential bacterial contamination regardless of the time or place of measurement and therefore seems to be a useful tool for infection prevention. As LAF leads to a significant decrease of respirable particles, it appears to be a protective factor for the health of the surgical team regardless of its use in infection prevention.
Level of evidence
I.
Journal Article
Three-dimensional flow around and through a porous screen
by
Marchand, Olivier C.
,
Duprat, Camille
,
Ramananarivo, Sophie
in
Aerodynamic drag
,
Air flow
,
Angle of attack
2024
We investigate the three-dimensional (3-D) flow around and through a porous screen for various porosities at high Reynolds number $Re = {O}(10^4)$. Historically, the study of this problem has been focused on two-dimensional cases and for screens spanning completely or partially a channel. Since many recent problems have involved a porous object in a 3-D free flow, we present a 3-D model initially based on Koo & James (J. Fluid Mech., vol. 60, 1973, pp. 513–538) and Steiros & Hultmark (J. Fluid Mech., vol. 853, 2018 pp. 1–11) for screens of arbitrary shapes. In addition, we include an empirical viscous correction factor accounting for viscous effects in the vicinity of the screen. We characterize experimentally the aerodynamic drag coefficient for a porous square screen composed of fibres, immersed in a laminar air flow with various solidities and different angles of attack. We test various fibre diameters to explore the effect of the space between the pores on the drag force. Using PIV and hot wire probe measurements, we visualize the flow around and through the screen, and in particular measure the proportion of fluid that is deviated around the screen. The predictions from the model for drag coefficient, flow velocities and streamlines are in good agreement with our experimental results. In particular, we show that local viscous effects are important: at the same solidity and with the same air flow, the drag coefficient and the flow deviations strongly depend on the Reynolds number based on the fibre diameter. The model, taking into account 3-D effects and the shape of the porous screen, and including an empirical viscous correction factor that is valid for fibrous screens may have many applications including the prediction of water collection efficiency for fog harvesters.
Journal Article
Investigation of the radial uniform and variable inflow profiles to improve production in the perforated horizontal wellbore
by
Hasini, Hasril
,
Abdulwahid, Mohammed A.
,
Kareem, Hasanain J.
in
Air flow
,
Air injection
,
Configurations
2024
This study delved into the efficacy of enhanced oil production (EOP) within perforated horizontal wellbores across diverse flow profiles. The authors implemented five distinct configurations, encompassing uniform radial air injection (profile 1) and variable radial air injection (profiles 2–5), with a particular emphasis on the concomitant production of liquid and air phases. Additionally, the study examined the frictional behavior along the perforated wellbore. Liquid production was demonstrably amplified throughout the bubble, plug, and slug flow regimes; however, a decline was observed in the stratified, stratified transition, and stratified wave flow regimes. Notably, the liquid product exhibited a direct correlation with both the mixture flow rate and its associated Reynolds number, signifying an increase with holdup and a decrease with void fraction. Conversely, air production displayed a positive association with a higher air flow rate. Overall, profiles 2 and 4 yielded the most favorable production during the bubble, plug, slug, and stratified flow regimes. In contrast, profile 3 emerged as the optimal configuration for the stratified transition and stratified wave flow regimes. The friction factor remained relatively constant with profile 1, experienced a reduction in profile 2, and exhibited an escalation in profile 3. Additionally, it increased in the middle of profile 4 and decreased at the center of the perforated section in profile 5. The friction factor behavior of profile 1 remained stable and smooth due to the invariant air flow rate throughout the perforated section. Conversely, some fluctuation was observed in profile 2 due to the inherent variability of the radial air injection along the perforated section. Importantly, the experimental and numerical results demonstrated satisfactory agreement across all flow patterns, with some minor discrepancies noted in the static pressure drop behavior during the bubble, dispersed bubble, and slug flow regimes.
Journal Article
Optimizing cold storage for uniform airflow and temperature distribution in apple preservation using CFD simulation
by
Alexander, Leo Daniel
,
Jakhar, Sanjeev
,
Dasgupta, Mani Sankar
in
639/166/988
,
639/4077/909
,
Air circulation
2024
Apples are preserved in cold storage within standard size crates to avoid injury during handling and are stacked in a specific manner to promote adequate air circulation. This research builds an air flow and heat transfer model of a cold room (5.75 m × 3.83 m × 3.75 m) with apple filled crates (0.55 m × 0.37 m × 0.3 m) modeled as a porous media and uses CFD simulation to study how alternate stacking impacts airflow distribution and product temperature. The conventional arrangement of crates, termed CS1, was simulated, and the resulting temperature distribution data were used to validate the model with published experimental data, a root mean square error of 1.13 °C indicates good match. The model is extended to examine temperature distribution for two additional arrangements of crates (CS2 and CS3) with changed orientations and spacing, in accordance with a specific strategy. CS3, featuring larger spacing along the z-direction, showed higher average air velocity compared to CS2 and CS1 by 7.4% and 3.7% respectively. CS3 also improved cooling rate by 25.2% and increased the number of chilled crates by 20% within 40 h, along with a reduced temperature heterogeneity (3.59 °C). The model could predict hot spots in various stacking configurations, aiding in optimal arrangement.
Journal Article
Air flow model development and application in a complex combined sewer system
2020
A steady-state air flow model was developed and applied in a complex combined sewer system in the city of Edmonton, Alberta, Canada. The model solves the continuity at each junction and the momentum equation for the links coupled with dropshaft and other manholes. The dropshaft pressure gradient is computed using the dropshaft equation and air flow rate through manhole pickholes is computed considering the opening as an orifice. A leakage factor is used as a calibration parameter to represent the area through which air can leak from the manholes into the neighborhood. The model uses an iterative solution algorithm with a forward sweep for the continuity and backward sweep for the momentum equation. An underrelaxation is applied to update pressure in each iteration for model stability. The model was calibrated and validated by using the measured air flow rate and manhole pressure in the sewer network, with good results. An analysis of the air flow characteristics shows that a significant amount of air is brought into the system due to a large headspace in the upstream trunk but over 70% of this air is released into the neighborhood due to reduced headspace in the downstream trunk.
Journal Article
Lift System Design of Air Cushion Vehicle
by
Zhang, Zongke
,
Chen, Yuxi
,
Fan, Jingfeng
in
Air cushion vehicle
,
Air flow
,
air flow distribution and pressure control
2024
Lift system plays key role to Air Cushion Vehcile overall performance, whose design includes cushion flow demanding analysis, lift fan design, airflow distribution and pressure control. The method to calculate cushion flow exit velocity variation with craft speed was firstly presented based on cushion induced wave. Through application development in CATIA, a full solution was presented to check if craft keeps in safety flight boundary at maximum calm water speed. Through analysis, current cushion flow demanding method based on statistic former ACVs seems conservative for particular ACV with super high cushion density, which was adviced to decrease by 10%∼15%. New double discharge lift fan for polar hovercraft was developed through CFD simulation, model test, full-scale utilizing. To reach designed bag-cushion pressure ratio, polar ACV model skirt feed holes was added by 1/3 more than simple geometrical scale. Larger bag feed holes and lower bag-cushion pressure ratio are effective means to lower lift power.
Journal Article
Flow Field Influence Analysis of Combination Intake Port to Port and In-Cylinder for a Four-Valve Diesel Engine
2019
Intake port structure directly affects the flow characteristics and combustion process of diesel engine, and then affects the comprehensive performance of diesel engine. To the intake ports of a four-valve direct injection diesel engine, the flow characteristics are analyzed on the four combined intake ports : (1) helical (left) and tangential (right), (2) tangential (left) and helical (right); (3) helical (left) and helical (right); and (4) tangential (left) and tangential (right).And the influence of air flow in four combined intake ports to in-cylinder gas flow is also analyzed. Results show that the helical and tangential combination intake ports flow velocity increases with the valve lift increases, and small turbulence arises at the valve guide lug, and the intake flow velocity of the minimum cross-section of the junction of the guiding section and the helical section is the maximum. The air flow in- cylinder moves from top cylinder head bottom to the cylinder bottom, the air flow is enlarged gradually by the small-scale irregular swirl, which eventually converges to a single swirl. The turbulence kinetic energy is very big when the air is just entering the cylinder, the flow space expands rapidly, and the dissipation of turbulent kinetic energy is very significant with the gas moves to the bottom of the cylinder.
Journal Article
Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models?
2011
From a subsurface physical point of view, this paper discusses the necessity of considering the two‐phase heat and mass transfer process in land surface models (LSMs). The potential‐based equations of coupled mass and heat transport under constant air pressure form the basis of the proposed model. The model is developed considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two‐phase heat and mass transfer is formulated fully considering diffusion, advection, and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two‐phase flow (moisture/air transfer). The influence adding airflow has on the coupled moisture and heat transfer is further investigated, clearly identifying the importance of including airflow in the coupled mass and heat transfer. How the isothermal two‐phase flow is affected by considering heat flow is also evaluated, showing the influence of heat flow only to be significant if the air phase plays a significant role in solving the equations of the water phase. On the basis of a field experiment, the proposed model is compared with the measured soil moisture, temperature, and evaporation rate, the results showing clearly that it is necessary to consider the airflow mechanism in soil‐atmosphere interaction studies.
Key Points
Airflow is important in land surface models
Heat flow must be considered when gas‐phase effect is strong
Airflow influences the subsurface mass and heat transport
Journal Article
Shortening Stabilization Time Using Pressurized Air Flow in Manufacturing Mesophase Pitch-Based Carbon Fiber
2019
Oxidation–stabilization using pressurized air flows of 0.5 and 1.0 MPa could successfully shorten the total stabilization time to less than 60 min for manufacturing mesophase pitch-based carbon fibers without deteriorating mechanical performance. Notably, the carbonized fiber heat-treated at 1000 °C for 30 min, which was oxidative–stabilized at 260 °C without soaking time with a heating rate of 2.0 °C/min using 100 mL/min of pressurized air flow of 0.5 MPa (total stabilization time: 55 min), showed excellent tensile strength and Young′s modulus of 3.4 and 177 GPa, respectively, which were higher than those of carbonized fiber oxidation–stabilized at 270 °C without soaking time with a heating rate of 0.5 °C/min using 100 mL/min of atmospheric air flow (total stabilization time: 300 min). Activation energies for oxidation reactions in stabilization using pressurized air flows were much lower than those of oxidation reactions using atmospheric air flow because of the higher oxidation diffusion from the outer surface into the center part of pitch fibers for the use of the pressurized air flows of 0.5 and 1.0 MPa than the atmospheric one. The higher oxygen diffusivities resulted in a more homogeneous distribution of oxygen weight uptake across the transverse section of mesophase pitch fibers, and allowed the improvement of the mechanical properties.
Journal Article