Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,322 result(s) for "Aircraft observations"
Sort by:
A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China
Cloud liquid water content (LWC) and droplet effective radius (re) have an important influence on cloud physical processes and optical characteristics. The microphysical properties of a three-layer pure liquid stratus were measured by aircraft probes on 26 April 2014 over a coastal region in Huanghua, China. Vertical variations in aerosol concentration (Na), cloud condensation nuclei (CCN) at supersaturation (SS) 0.3%, cloud LWC and cloud re are examined. Large Na in the size range of 0.1–3 μm and CCN have been found within the planetary boundary layer (PBL) below ~1150 m. However, Na and CCN decrease quickly with height and reach a level similar to that over marine locations. Corresponding to the vertical distributions of aerosols and CCN, the cloud re is quite small (3.0–6 μm) at heights below 1150 m, large (7–13 μm) at high altitudes. In the PBL cloud layer, cloud re and aerosol Na show a negative relationship, while they show a clear positive relationship in the upper layer above PBL with much less aerosol Na. It also shows that the relationship between cloud re and aerosol Na changes from negative to positive when LWC increases. These results imply that the response of cloud re to aerosol Na depends on the combination effects of water-competency and collision-coalescence efficiency among droplets. The vertical structure of aerosol Na and cloud re implies potential cautions for the study of aerosol-cloud interaction using aerosol optical depth for cloud layers above the PBL altitude.
A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma
This study presents a summary of the properties of deep convective updraft and downdraft cores over the central plains of the United States, accomplished using a novel and now-standard Atmospheric Radiation Measurement Program (ARM) scanning mode for a commercial wind-profiler system. A unique profiler-based hydrometeor fall-speed correction method modeled for the convective environment was adopted. Accuracy of the velocity retrievals from this effort is expected to be within 2 m s−1, with minimal bias and base core resolution expected near 1 km. Updraft cores are found to behave with height in reasonable agreement with aircraft observations of previous continental convection, including those of the Thunderstorm Project. Intense updraft cores with magnitudes exceeding 15 m s−1are routinely observed. Downdraft cores are less frequently observed, with weaker magnitudes than updrafts. Weak, positive correlations are found between updraft intensity (maximum) and updraft diameter length (coefficientrto 0.5 aloft). Negligible correlations are observed for downdraft core lengths and intensity.
Super Typhoon Saola (2023) over the Northern Part of the South China Sea—Aircraft Data Analysis
In situ aircraft observations in typhoons have been scarce. This paper documents and analyses the aircraft and dropsonde data collected in Super Typhoon Saola (2023) over the northern part of the South China Sea. The wind and turbulence structures of the typhoon are investigated. The turbulence intensities are quantified in terms of turbulent kinetic energy (TKE) and eddy dissipate rate (EDR), and these data are compared with other available estimates of turbulence intensities, such as those based on weather radars, meteorological satellites, and numerical weather prediction (NWP) models. It is found that the TKE and EDR are closely correlated, and they are consistent with the weather radar/satellite observations as well as NWP-based outputs. Furthermore, the boundary layer inflow, vertical wind profiles, and atmospheric stability are analysed based on the dropsonde observations. The analysed results would advance the understanding of typhoon structures and offer references for the validation of remote-sensing observations and NWP models.
Multi-Case Analysis of Ice Particle Properties of Stratiform Clouds Using In Situ Aircraft Observations in Hebei, China
This study investigates the size distribution, the mean diameter, and the concentration of ice particles within stratiform clouds by using in situ observations from 29 flights in Hebei, China. Furthermore, it examines the empirical fitting of ice particle size distributions at different temperatures using Gamma and exponential functions. Without considering the first three bins of ice particles, the mean diameter of ice particles (size range 100–1550 µm) is found to increase with temperature from −15 to −9 °C but decrease with temperature from −9 to 0 °C. By considering the first three bins of ice particles using the empirical Gamma fitting relationship found in this study, the mean diameter of ice particles (size range 25–1550 µm) shows a similar variation trend with temperature, while the turning point changes from −9 to −10 °C. The ice particle number concentration increases from 13.37 to 50.23 L−1 with an average of 31.27 L−1 when temperature decreases from 0 to −9 °C. Differently, the ice concentration decreases from 50.23 to about 22.4 L−1 when temperature decreases from −9 to −12 °C. The largest mean diameter of ice particles at temperatures around −9 and −10 °C is most likely associated with the maximum difference of ice and water supersaturation at that temperature, making the ice particles grow the fastest. These findings provide valuable information for future physical parameterization development of ice crystals within stratiform clouds.
Assessment of Different Boundary Layer Parameterization Schemes in Numerical Simulations of Typhoon Nida (2016) Based on Aircraft Observations
This study aimed to find a boundary layer parameter scheme suitable for typhoons in the South China Sea based on a comparison with the aircraft detection data from Typhoon Nida (2016). We simulated the typhoon boundary layer wind field in different boundary layer schemes, such as YSU, MYNN, BouLac, and Shin-Hong, and with a no-boundary-layer parametrization scheme. The results were as follows: (1) In the eye and eyewall area, the YSU and MYNN schemes could better simulate the east–west wind characteristics and the YSU scheme could also simulate the jet current of the southerly wind component in the boundary layer in the eyewall. (2) Compared with the eye area, the easterly wind in the eyewall area was strong, and the overall vertical movement was weak. (3) The YSU and MYNN schemes had similar turbulent kinetic energies that were also similar to those from aircraft observations; the turbulent kinetic energy in the simulations of several schemes in the boundary layer was evidently lower than that in the aircraft observations. Thus, the MYNN and the YSU schemes yielded better simulations for the eye and eyewall areas, and the YSU scheme was more similar to the boundary layer observations.
A Reanalysis of the 1944–53 Atlantic Hurricane Seasons—The First Decade of Aircraft Reconnaissance
The main historical archive of all tropical storms, subtropical storms, and hurricanes in the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico from 1851 to the present is known as the Atlantic hurricane database (HURDAT), which is the fundamental database for meteorological, engineering, and financial studies of these cyclones. Previous work has demonstrated that a reanalysis of HURDAT is necessary because it contains many random errors and systematic biases. The Atlantic Hurricane Reanalysis Project is an ongoing effort to correct the errors in HURDAT and to make HURDAT as accurate a database as possible with utilization of all available data. For this study, HURDAT is reanalyzed for the period 1944–53, the first decade of the ‘‘aircraft reconnaissance era.’’ The track and intensity of each existing tropical cyclone in HURDAT are reassessed, and previously unrecognized tropical cyclones are discovered, analyzed, and recommended to the HURDAT Best Track Change Committee for inclusion into HURDAT (existing tropical cyclones may be removed from the database as well if analyses indicate evidence that no tropical storm existed). Changes to the number of tropical storms, hurricanes, major hurricanes, accumulated cyclone energy, and U.S. landfalling hurricanes are recommended for most years of the decade. Estimates of uncertainty in the reanalyzed database for the decade are also provided.
Impacts of Thinning Aircraft Observations on Data Assimilation and Its Prediction during Typhoon Nida (2016)
High frequency aircraft observations from the Government Flying Service of the Hong Kong Government, penetrating a tropical cyclone at low altitude over the South China Sea, were thinned by arithmetic means over different time intervals to identify structures of tropical cyclone at different scales. It is found that the thinning process can reduce serial correlation in observational errors and enhance the representation of aircraft observations. Assimilation experiments demonstrate that aircraft observations can improve the track and intensity forecasts of Typhoon Nida (2016). The changes in dynamic structures indicate that the imbalance generated from assimilating aircraft observations at the sub-grid scale can be alleviated by using longer time intervals of the arithmetic mean. Assimilating aircraft observations at the grid scale achieves optimal forecasts based on verifications against independent observations and investigations of environmental and ventilation flows. In addition, it is indicated that decreasing the quality control threshold and changing the observational error of aircraft observations in the data assimilation can reduce the representation errors.
Observation uncertainty and impact of Mode‐S aircraft observations in the Met Office limited area numerical weather prediction system
Aircraft observations derived from Mode‐Select Enhanced Surveillance (Mode‐S EHS) reports are a valuable, high temporo‐spatial resolution, source of upper‐air information that can be assimilated into numerical weather prediction models. At present temperature and wind Mode‐S EHS observations are assimilated into the Met Office's convection‐permitting model, the UKV. These observations are obtained from two different sources, an inhouse set of receivers and via the European Meteorological Aircraft Derived Data Centre (EMADDC). Currently, Mode‐S EHS data are assimilated using the same observation error standard deviation profiles as AMDAR data; however, differing observation processing is anticipated to result in differing error profiles for the Met Office and EMADDC data and for the AMDAR data. Therefore, we estimate new observation error statistics, including error correlations for the two types of Mode‐S EHS data. We also consider the impact of the different aircraft data on the UKV analysis. We find that the observation error standard deviation profiles for wind and temperature are dependent on observation type and season and differ from the current profiles used in the assimilation. Additionally, the Mode‐S EHS observation errors have a considerable spatial correlation that increases with height and is much longer than the spatial thinning distance. The estimated observation influence shows that Mode‐S EHS data are not optimally assimilated, and that the use of updated, observation‐type specific, error profiles is expected to improve the assimilation. The assimilation may be further optimized by modifying the observation thinning distance or including the correlated observation errors in the assimilation. Aircraft observations are a valuable source of information that can be assimilated into numerical weather prediction models. Using data from the Met Office regional system we assess the observation uncertainty and assimilation impact of aircraft observations. Our new results suggest that the current observation uncertainties used in the assimilation are not correct and, as shown by the calculated assimilation impact metrics, the data are not optimally assimilated. Assimilation of aircraft data may be improved by assigning updated observation error profiles and by modifying the observation thinning distance or accounting for correlated observation error statistics.
Wind Estimation in the Lower Atmosphere Using Multirotor Aircraft
Unmanned aerial vehicles are increasingly used to study atmospheric structure and dynamics. While much emphasis has been on the development of fixed-wing unmanned aircraft for atmospheric investigations, the use of multirotor aircraft is relatively unexplored, especially for capturing atmospheric winds. The purpose of this article is to demonstrate the efficacy of estimating wind speed and direction with 1) a direct approach using a sonic anemometer mounted on top of a hexacopter and 2) an indirect approach using attitude data from a quadcopter. The data are collected by the multirotor aircraft hovering 10 m above ground adjacent to one or more sonic anemometers. Wind speed and direction show good agreement with sonic anemometer measurements in the initial experiments. Typical errors in wind speed and direction are smaller than 0.5 and 30°, respectively. Multirotor aircraft provide a promising alternative to traditional platforms for vertical profiling in the atmospheric boundary layer, especially in conditions where a tethered balloon system is typically deployed.
A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget
Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0 ∕ HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0 ∕ HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the  ∼  6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM  ≡  Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30 %). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.