Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
81
result(s) for
"Aldosterone - toxicity"
Sort by:
The novel mineralocorticoid receptor antagonist finerenone attenuates neointima formation after vascular injury
by
Musmann, Robert-Jonathan
,
Schäfer, Andreas
,
Sedding, Daniel G.
in
Aldosterone
,
Aldosterone - toxicity
,
Animals
2017
The novel nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone holds promise to be safe and efficient in the treatment of patients with heart failure and/or chronic kidney disease. However, its effects on vascular function remain elusive.
The aim of this study was to determine the functional effect of selective MR antagonism by finerenone in vascular cells in vitro and the effect on vascular remodeling following acute vascular injury in vivo.
In vitro, finerenone dose-dependently reduced aldosterone-induced smooth muscle cell (SMC) proliferation, as quantified by BrdU incorporation, and prevented aldosterone-induced endothelial cell (EC) apoptosis, as measured with a flow cytometry based caspase 3/7 activity assay. In vivo, oral application of finerenone resulted in an accelerated re-endothelialization 3 days following electric injury of the murine carotid artery. Furthermore, finerenone treatment inhibited intimal and medial cell proliferation following wire-induced injury of the murine femoral artery 10 days following injury and attenuated neointimal lesion formation 21 days following injury.
Finerenone significantly reduces apoptosis of ECs and simultaneously attenuates SMC proliferation, resulting in accelerated endothelial healing and reduced neointima formation of the injured vessels. Thus, finerenone appears to provide favorable vascular effects through restoring vascular integrity and preventing adverse vascular remodeling.
Journal Article
Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases
2016
Hyper-aldosteronism is associated with myocardial dysfunction including induction of cardiac fibrosis and maladaptive hypertrophy. Mechanisms of these cardiotoxicities are not fully understood. Here we show that mineralocorticoid receptor (MR) activation by aldosterone leads to pathological myocardial signalling mediated by mitochondrial G protein-coupled receptor kinase 2 (GRK2) pro-death activity and GRK5 pro-hypertrophic action. Moreover, these MR-dependent GRK2 and GRK5 non-canonical activities appear to involve cross-talk with the angiotensin II type-1 receptor (AT
1
R). Most importantly, we show that ventricular dysfunction caused by chronic hyper-aldosteronism
in vivo
is completely prevented in cardiac
Grk2
knockout mice (KO) and to a lesser extent in
Grk5
KO mice. However, aldosterone-induced cardiac hypertrophy is totally prevented in
Grk5
KO mice. We also show human data consistent with MR activation status in heart failure influencing GRK2 levels. Therefore, our study uncovers GRKs as targets for ameliorating pathological cardiac effects associated with high-aldosterone levels.
High aldosterone levels cause heart damage independently of its well-known effect on blood pressure. Here, Cannavo
et al
. show that aldosterone-mediated cardiac pathology involves G protein-coupled receptor (GPCR) kinase 2 (GRK2) and GRK5 that integrate signals from angiotensin II receptor (AT1R).
Journal Article
Mitochondria-Targeted Antioxidant Mito-Tempo Protects Against Aldosterone-Induced Renal Injury In Vivo
2017
Background/Aims: Growing evidence suggests mitochondrial dysfunction (MtD) and the Nlrp3 inflammasome play critical roles in chronic kidney disease (CKD) progression. We previously reported that Aldosterone (Aldo)-induced renal injury in vitro is directly caused by mitochondrial reactive oxygen species (mtROS)-mediated activation of the Nlrp3 inflammasome. Here we aimed to determine whether a mitochondria-targeted antioxidant (Mito-Tempo) could prevent Aldo-induced kidney damage in vivo. Methods: C57BL/6J mice were treated with Aldo and/or Mito-Tempo (or ethanol as a control) for 4 weeks. Renal injury was evaluated by Periodic Acid-Schiff reagent or Masson’s trichrome staining and electron microscopy. ROS were measured by DCFDA fluorescence and ELISA. MtD was determined by real-time PCR and electron microscopy. Activation of the Nlrp3 inflammasome and endoplasmic reticulum stress (ERS) was detected via western blot. Results: Compared with control mice, Aldo-infused mice showed impaired renal function, increased mtROS production and MtD, Nlrp3 inflammasome activation, and elevated ERS. We showed administration of Mito-Tempo significantly improved renal function and MtD, and reduced Nlrp3 inflammasome activation and ERS in vivo. Conclusion: Mitochondria-targeted antioxidants may attenuate Aldo-infused renal injury by inhibiting MtD, the Nlrp3 inflammasome, and ERS in vivo. Therefore, targeting mtROS might be an effective strategy for preventing CKD.
Journal Article
Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder
by
Murck, Harald
,
Poundstone, Patricia K.
,
Wes, Paul D.
in
Aldosterone
,
Aldosterone - administration & dosage
,
Aldosterone - blood
2012
The potential role of aldosterone in the pathophysiology of depression is unclear. The aim of this study was to test the hypothesis that prolonged elevation of circulating aldosterone induces depression-like behaviour accompanied by disease-relevant changes in gene expression in the hippocampus. Subchronic (2-wk) treatment with aldosterone (2 μg/100 g body weight per day) or vehicle via subcutaneous osmotic minipumps was used to induce hyperaldosteronism in male rats. All rats (n=20/treatment group) underwent a modified sucrose preference test. Half of the animals from each treatment group were exposed to the forced swim test (FST), which served both as a tool to assess depression-like behaviour and as a stress stimulus. Affymetrix microarray analysis was used to screen the entire rat genome for gene expression changes in the hippocampus. Aldosterone treatment induced an anhedonic state manifested by decreased sucrose preference. In the FST, depressogenic action of aldosterone was manifested by decreased latency to immobility and increased time spent immobile. Aldosterone treatment resulted in transcriptional changes of genes in the hippocampus involved in inflammation, glutamatergic activity, and synaptic and neuritic remodelling. Furthermore, aldosterone-regulated genes substantially overlapped with genes affected by stress in the FST. This study demonstrates the existence of a causal relationship between the hyperaldosteronism and depressive behaviour. In addition, aldosterone treatment induced changes in gene expression that may be relevant to the aetiology of major depressive disorder. Subchronic treatment with aldosterone represents a new animal model of depression, which may contribute to the development of novel targets for the treatment of depression.
Journal Article
Transient Receptor Potential Melastatin 4 (TRPM4) Contributes to High Salt Diet-Mediated Early-Stage Endothelial Injury
2017
Background/Aims: The present study investigated whether the transient receptor potential melastatin 4 (TRPM4) channel plays a role in high salt diet (HSD)-induced endothelial injuries. Methods: Western blotting and immunofluorescence were used to examine TRPM4 expression in the mesenteric endothelium of Dahl salt-sensitive (SS) rats fed a HSD. The MTT, TUNEL, and transwell assays were used to evaluate the cell viability, cell apoptosis, and cell migration, respectively, of human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assays were used to determine the concentrations of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), and E-selectin. Carboxy-H2DCFDA, a membrane-permeable reactive oxygen species (ROS)-sensitive fluorescent probe, was used to detect intracellular ROS levels. Results: TRPM4 was mainly expressed near the plasma membrane of mesenteric artery endothelial cells, and its expression level increased in SS hypertensive rats fed a HSD. Its protein expression was significantly upregulated upon treatment with exogenous hydrogen peroxide (H 2 O 2 ) and aldosterone in cultured HUVECs. Cell viability decreased upon treatment with both agents in a concentration-dependent manner, which could be partially reversed by 9-phenanthrol, a specific TRPM4 inhibitor. Exogenous H 2 O 2 induced apoptosis, enhanced cell migration, and increased the release of adhesion molecules, including ICAM-1, VCAM-1, and E-selectin, all of which were significantly attenuated upon treatment with 9-phenanthrol. Aldosterone and H 2 O 2 induced the accumulation of intracellular ROS, which was significantly inhibited by 9-phenanthrol, suggesting that oxidative stress is one of the mechanisms underlying aldosterone-induced endothelial injury. Conclusions: Given the fact that oxidative stress and high levels of circulating aldosterone are present in hypertensive patients, we suggest that the upregulation of TRPM4 in the vascular endothelium may be involved in endothelial injuries caused by these stimuli.
Journal Article
Beneficial Effects of Proanthocyanidins in the Cardiac Alterations Induced by Aldosterone in Rat Heart through Mineralocorticoid Receptor Blockade
by
de las Heras, Natalia
,
Martín-Fernández, Beatriz
,
Yao, Yi-Zhou
in
Aldosterone
,
Aldosterone - toxicity
,
Alterations
2014
Aldosterone administration in rats results in several cardiac alterations. Previous studies have demonstrated that proanthocyanidins, phenolic bioactive compounds, have cardioprotective effects. We studied the potential beneficial effects of the proanthocyanidin-rich almond skin extract (PASE) on the cardiac alterations induced by aldosterone-salt treatment, their effects in mineralocorticoid receptor activity and we sought to confirm proanthocyanidins as the specific component of the extract involved in the beneficial cardiac effects. Male Wistar rats received aldosterone (1 mg/Kg/day) +1% NaCl for 3 weeks. Half of the animals in each group were simultaneously treated with either PASE (100 mg/Kg/day) or spironolactone (200 mg/Kg/day). The ability of PASE to act as an antagonist of the mineralocorticoid receptor was examined using a transactivation assay. High performance liquid chromatography was used to identify and to isolate proanthocyanidins. Hypertension and diastolic dysfunction induced by aldosterone were abolished by treatment with PASE. Expression of the aldosterone mediator SGK-1, together with fibrotic, inflammatory and oxidative mediators were increased by aldosterone-salt treatment; these were reduced by PASE. Aldosterone-salt induced transcriptional activity of the mineralocorticoid receptor was reduced by PASE. HPLC confirmed proanthocyanidins as the compound responsible for the beneficial effects of PASE. The effects of PASE were comparable to those seen with the mineralocorticoid antagonist, spironolactone. The observed responses in the aldosterone-salt treated rats together with the antagonism of transactivation at the mineralocorticoid receptor by PASE provides evidence that the beneficial effect of this proanthocyanidin-rich almond skin extract is via as a mineralocorticoid receptor antagonist with proanthocyanidins identified as the compounds responsible for the beneficial effects of PASE.
Journal Article
Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro
by
Nan MAO Yuan CHENG Xin-li SHI Li WANG Ji WEN Qiong ZHANG Qiong-dan HU Jun-ming FAN
in
Aldosterone - toxicity
,
Animals
,
Antioxidants - pharmacology
2014
Aim: Aldosterone is elevated in many diseases such as hypertension, diabetic nephropathy and chronic kidney disease, etc. The aim of this study was to investigate the effects of aldosterone on intracellular ROS production and autophagy in podocytes in vitro, and to explore the possibility of ginsenoside Rg1 (Rg1) being used for protecting podocytes from aldosterone-induced injury.
Methods: MPC5 mouse podocyte cells were tested. Autophagosome and autophagic vacuole formation were examined under confocal microscopy with MDC and acridine orange staining, respectively. ROS were detected with flow cytometry. Malondialdehyde content and superoxide dismutase (T-SOD) activity were measured using commercial kits. The expression of LC3-II, beclin-1, SOD2 and catalase was measured by Western blotting.
Results: Treatment with aldosterone (10 nmol/L) significantly increased ROS generation and the expression of SOD2 and catalase in MPC5 cells. Furthermore, treatment with aldosterone significantly increased the conversion of LC3-I to LC3-II, beclin-1 expression and autophagosome formation. Co-treatment with rapamycin (1 ng/mL) or chloroquine (10 μmol/L) further increased aldosterone-induced autophagosome formation. Co-treatment with Rg1 (80 ng/mL) effectively relieved oxidative stress and increased T-SOD activity at the early stage and subsequently decreased autophagy in aldosterone-treated podocytes. Co-treatment with 3-MA (4 mmol/L) or NAC (50 mmol/L) exerted similar effects against aldosterone-induced autophagy in podocytes.
Conclusion: Aldosterone enhances ROS generation and promotes autophagy in podocytes in vitro. Ginsenoside-Rg1 effectively relieves aldosterone-induced oxidative stress, thereby indirectly inhibiting aldosterone-induced podocyte autophagy.
Journal Article
Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury
2016
Aldosterone (Aldo) is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER) stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA), and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.
Journal Article
Effect and mechanism of poly (ADP-ribose) polymerase-1 in aldosterone-induced apoptosis
by
GAI, YUSHENG
,
ZHANG, WEILI
,
ZHANG, MINGXIANG
in
Aldosterone
,
Aldosterone - toxicity
,
aldosterone receptor antagonists
2015
The present study aimed to investigate the effects of aldosterone on vascular endothelial cells and the viability of poly (ADP-ribose) polymerase 1 (PARP1) in cells, and to examine the molecular mechanisms underlying the effects of aldosterone on vascular endothelial cell injury. Cultured endothelial cells were treated either with different concentrations of aldosterone for the same duration or with the same concentrations of aldosterone for different durations, and the levels of apoptosis and activity of PARP1 in the cells were detected, respectively. Aldosterone receptor antagonists or PARP1 inhibitors were added to cells during treatment with aldosterone and the levels of apoptosis and activity of PARP1 were detected. As the concentration of aldosterone increased or the treatment time increased, the number of apoptotic cells and the activity of PARP1 increased. The aldosterone receptor antagonists and PARP1 inhibitors inhibited the increase of apoptosis and PARP1 activity caused by aldosterone treatment. Aldosterone activated the activity of PARP1 via the aldosterone receptor, inhibiting cell proliferation and inducing apoptosis. Treatment with PARP1 may be used as a target for vascular diseases caused by aldosterone at high concentrations.
Journal Article
High-sodium intake aggravates myocardial injuries induced by aldosterone via oxidative stress in Sprague-Dawley rats
by
Jing-yi LI Shao-ling ZHANG Meng REN Yan-ling WEN Li YAN Hua CHENG
in
Aldosterone - toxicity
,
Animals
,
Biomedical and Life Sciences
2012
Aim: To evaluate the effects of aldosterone with or without high sodium intake on blood pressure, myocardial structure and left ven- tricular function in rats, and to investigate the mechanisms underlying the effects. Methods: Eight-week-old male Sprague-Dawley rats were randomly divided into 3 groups: (1) control (CON) group fed a normal sodium diet, (2) aldosterone (ALD) group receiving aldosterone infusion and a normal sodium diet, and (3) high sodium plus aldosterone (HS- ALD) group receiving 1% NaCI diet in conjunction with aldosterone infusion. Aldosterone was administered through continuously sub- cutaneous infusion with osmotic minipump at the rate of 0.75 pg/h for 8 weeks. The myocardium structure was observed using transt- horacic echocardiography and transmission electron microscopy. The collagen deposition in left ventricle was evaluated with Masson's trichrome staining. The expression of IL-18, p22phox, and p47phox proteins was examined using Western blot analysis. Results: The systolic blood pressure in the ALD and HS-ALD groups was significantly higher than that in the CON group after 2-week treatment. But the blood pressure showed no significant difference between the HS-ALD and ALD groups. The left ventricular hyper- trophy, myocardial collagen deposition and oxidative stress were predominantly found in the HS-ALD and ALD group. Furthermore, the breakdown of myocardial structure and oxidative stress were more apparent in the HS-ALD group as compared with tho~e in the ALD group. Conclusion: Long-term infusion of aldosterone results in hypertension and profibrotic cardiovascular responsesin rats fed a normal sodium diet, which were mediated by oxidative stress. High-sodium intake could aggravate myocardial injuries induced by aldosterone.
Journal Article