Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Alexandrium spp"
Sort by:
Alexandrium spp.: From Toxicity to Potential Biotechnological Benefits
Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.
Phylogenetic and Autecology Characteristics of Five Potentially Harmful Dinoflagellate Alexandrium Species (Dinophyceae, Gonyaulacales, Pyrocystaceae) in Tropical Waters: A. affine, A. fraterculus, A. leei, A. pseudogonyaulax, and A. tamiyavanichii
Five species of Alexandrium (A. affine, A. fraterculus, A. leei, A. pseudogonyaulax, and A. tamiyavanichii) are commonly found in Vietnamese waters. They were distinguished based on their apical pore complex (A.P.C), precingular first plate (1′), ventral pore (Vp), and sulcal platelets. A genetic analysis was conducted using nuclear rDNA sequences of ITS and LSU (D1–D3, D8–D10). The growth rates of A. fraterculus, A. leei, A. tamiyavanichii, and A. pseudogonyaulax were quite similar. Specifically, these four species had the highest growth rates at two temperature levels of 24 °C and 27 °C, at salinities ranging from 25 psu to 35 psu. Furthermore, these species were able to adapt to a low salinity of 20 psu at temperatures from 18 °C to 27 °C. No Paralytic Shellfish Toxins (PSTs) were found in the two Alexandrium affine strains, VINVN01-1 and VINVN01-2. The detection limit for PSTs ranged from 0.45 to 15.5 fg cell−1, depending on the molecular response and available biomass.
Effectiveness of Kaolinite with and Without Polyaluminum Chloride (PAC) in Removing Toxic Alexandrium minutum
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, and 0.3 g L−1), two pH levels (7 and 8), and two cell densities (1.0 and 2.0 × 107 cells L−1) in seawater. PAC significantly enhanced removal, achieving up to 100% efficiency within two hours. Zeta potential analysis showed that PAC imparted positive surface charges to the clay, promoting electrostatic interactions with negatively charged algal cells and enhancing flocculation through Van der Waals attractions. In addition, the study conducted a cost estimate analysis and found that treating one hectare at 0.1 g L−1 would cost approximately USD 31.75. The low KPAC application rate also suggests minimal environmental impact on benthic habitats.
Toxic Alexandrium Treatment in Western Australia: Investigating the Efficacy of Modified Nano Clay
Alexandrium spp. blooms produce a range of toxins, including spirolides, goniodomins, and paralytic shellfish toxins (PSTs). Of these, PSTs are the most impactful due to their high affinity for voltage-gated sodium ion channels in nerve cell membranes. This interaction can cause neurological effects such as paralysis and, in severe cases, may lead to death. Given the implications of Alexandrium blooms on public health, all mitigation, prevention, and treatment strategies aim to reduce their socioeconomic impacts. However, monitoring harmful algal blooms remains difficult due to confounding influences such as pollution, climate change, and the inherent variability of environmental conditions. These factors can complicate early detection and management efforts, especially as the intensity and frequency of blooms continue to rise, further exacerbating their socioeconomic consequences. This review offers insights into several management approaches to prevent and control Alexandrium blooms, focusing on modified nano-clays as a promising emergency mitigation measure for low-density toxic algal blooms, especially in areas predominantly used for recreational fishing. However, it is recommended that treatment be coupled with monitoring to alleviate reliance on treatment alone.
Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach
Alexandrium spp., globally recognized as harmful algal bloom (HAB) species, pose severe threats to marine ecosystems, fisheries, and public health. Based on 469 occurrence records and 24 marine environmental variables, this study employed the Biomod2 ensemble modeling framework to predict the potential distribution of Alexandrium spp. under current and future climate scenarios, and to assess the role of key environmental factors and the spatiotemporal dynamics of habitat centroid shifts. The results revealed that (1) the ensemble model outperformed single models (AUC = 0.998, TSS = 0.977, Kappa = 0.978), providing higher robustness and reliability in prediction; (2) salinity range (bio18, 19.1%) and mean salinity (bio16, 5.8%) were the dominant factors, while minimum temperature (bio23) also showed strong constraints, indicating that salinity determines “whether persistence is possible,” while temperature influences “whether blooms occur”; (3) under present conditions, high-suitability habitats are concentrated in Bohai Bay, the Yangtze River estuary to the Fujian coast, and parts of Guangdong; (4) climate change is predicted to drive a southward shift of suitable habitats, with the most pronounced expansion under the high-emission scenario (RCP8.5), leading to the emergence of new high-risk areas in the South China coast and adjacent South China Sea; (5) centroid analysis further indicated a pronounced southward migration under RCP8.5 by 2100, highlighting a regional reconfiguration of ecological risks. Collectively, salinity and temperature are identified as the core drivers shaping the ecological niche of Alexandrium spp., and future warming is likely to exacerbate HAB risks in southern China. This study delineates key prevention regions and proposes a shift from reactive to proactive management strategies, providing scientific support for HAB monitoring and marine ecological security in China’s coastal waters.
Quantifying the Potential Water Filtration Capacity of a Constructed Shellfish Reef in a Temperate Hypereutrophic Estuary
Shellfish reefs have been lost from bays and estuaries globally, including in the Swan-Canning Estuary in Western Australia. As part of a national program to restore the ecosystem services that such reefs once provided and return this habitat from near extinction, the mussel Mytilus galloprovincialis was selected for a large-scale shellfish reef construction project in this estuary. To assess the potential filtration capacity of the reef, estuary seston quality, mussel feeding behavior, and valve gape activity were quantified in the laboratory and field during winter and summer. In general, estuary water contained high total particulate concentrations (7.9–8.7 mg L−1). Standard clearance rates were greater in winter (1.9 L h−1; 17 °C) than in summer (1.3 L h−1; 25 °C), the latter producing extremely low absorption efficiencies (37%). Mussel valves remained open ~97% and ~50% of the time in winter and summer, respectively. They often displayed erratic behavior in summer, possibly due to elevated temperatures and the toxic microalgae Alexandrium spp. Despite numerous stressors, the reef, at capacity, was estimated to filter 35% of the total volume of the estuary over winter, incorporating 42.7 t of organic matter into mussel tissue. The reefs would thus make a substantial contribution to improving estuary water quality.
Propidium Monoazide based selective iDNA monitoring method improves eDNA monitoring for harmful algal bloom Alexandrium species
eDNA, also known as environmental DNA, has garnered significant attention due to its potential applications in various fields such as biodiversity assessment, species distribution monitoring, ecological interaction analysis, and quantitative analysis. However, the presence of non-selective DNA signals in eDNA samples poses challenges in accurately detecting species, assessing biodiversity, and conducting quantitative analysis. To address these limitations, this study developed a novel method for selectively detecting iDNA from specific species in eDNA samples. The method involved the application of PMA treatment to Alexandrium spp. effectively preventing the detection of non-selective exDNA signals. Additionally, by optimizing the filter size used in the sampling process, the researchers were able to selectively collect and analyze iDNA from species of interest, particularly Alexandrium spp. Furthermore, the study successfully demonstrated the selective collection and analysis of iDNA from Alexandrium spp. cysts present in the sediment layer, further strengthening the findings. The results indicated that the combined use of PMA treatment and filter size optimization significantly enhanced the selective detection capability of iDNA. The successful selective detection of iDNA from eDNA in the sediment layer highlights the practical applicability of the developed method. This study holds promise for advancing eDNA monitoring technology by providing a selective iDNA detection method utilizing PMA. Moreover, these findings lay the foundation for effectively utilizing iDNA in environmental conservation, monitoring, and ecological research.
Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004- 2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by preMar. column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.
Detection and quantification of cultured marine Alexandrium species by real-time PCR
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella , Alexandrium affine , Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.
Time-Series Evolution of Toxic Organisms and Related Environmental Factors in a Brackish Ecosystem of the Mediterranean Sea
Issue Title: Theme Marine Biodiversity: Patterns and Processes, Assessment,Threats, Management and Conservation In the framework of the EU Project STRATEGY, a short-term study was carried out in the Marinello ecosystem, a small brackish area located on the Tyrrhenian coast of Sicily (Italy). The investigation was aimed at understanding the dynamics of phytoplankton toxic blooms in relation to other planktonic species and environmental conditions. The study started on 10 March 2003, in coincidence with the first detection of Alexandrium minutum, a dinoflagellate known as a producer of Paralyzing Shellfish Toxins (PST) and lasted until 4 June 2003, when the bloom collapsed. The specific identity of A. minutum was confirmed on field mixed samples, through the use of species-specific PCR-primers targeting the 5.8S rDNA-ITS regions. Water samples and phytoplankton net hauls were taken approximately at 10 days intervals in the Verde Pond, one of the five basins of the Marinello ecosystem, in order to evaluate the incidence of toxic and non-toxic dinoflagellate species over the whole planktonic community. The evolution of the main environmental and trophic parameters (temperature, salinity, dissolved oxygen, POC, C/N, DIN, PO^sub 4^-P) was simultaneously investigated. Alexandrium blooms were mostly characterized by A. minutum (max. 6 × 10^sup 5^ cells l^sup -1^ on April 11) and Alexandrium tamarense as an associated species (max. 2.5 × 10^sup 4^ cells l^sup -1^ on March 25). During the bloom, dinoflagellates or small flagellates dominated over the other taxa, with a minimum incidence of diatoms. The load of dissolved inorganic nitrogen was maximum in the pre-bloom phase (29 μM on March 19), after which it decreased sharply. An oxygen supersaturation event was registered in coincidence with the A. minutum bloom. The amounts of POC ranged between 266 and 658 μg l^sup -1^ showing a discontinuous temporal trend. A recent introduction of A. minutum into the Verde Pond is suggested on the basis of the absence of this species in past years.[PUBLICATION ABSTRACT]