Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
10,605 result(s) for "Algebra, Boolean"
Sort by:
A Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth
In this paper we introduce a general framework for the study of limits of relational structures and graphs in particular, which is based on a combination of model theory and (functional) analysis. We show how the various approaches to graph limits fit to this framework and that they naturally appear as “tractable cases” of a general theory. As an outcome of this, we provide extensions of known results. We believe that this puts these into a broader context. The second part of the paper is devoted to the study of sparse structures. First, we consider limits of structures with bounded diameter connected components and we prove that in this case the convergence can be “almost” studied component-wise. We also propose the structure of limit objects for convergent sequences of sparse structures. Eventually, we consider the specific case of limits of colored rooted trees with bounded height and of graphs with bounded tree-depth, motivated by their role as “elementary bricks” these graphs play in decompositions of sparse graphs, and give an explicit construction of a limit object in this case. This limit object is a graph built on a standard probability space with the property that every first-order definable set of tuples is measurable. This is an example of the general concept of
Boolean differential calculus
The Boolean Differential Calculus (BDC) is a very powerful theory that extends the basic concepts of Boolean Algebras significantly. Its applications are based on Boolean spaces B and B n , Boolean operations, and basic structures such as Boolean Algebras and Boolean Rings, Boolean functions, Boolean equations, Boolean inequalities, incompletely specified Boolean functions, and Boolean lattices of Boolean functions. These basics, sometimes also called switching theory, are widely used in many modern information processing applications. The BDC extends the known concepts and allows the consideration of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. The BDC defines a small number of derivative and differential operations. Many existing theorems are very welcome and allow new insights due to possible transformations of problems. The available operations of the BDC have been efficiently implemented in several software packages. The common use of the basic concepts and the BDC opens a very wide field of applications. The roots of the BDC go back to the practical problem of testing digital circuits. The BDC deals with changes of signals which are very important in applications of the analysis and the synthesis of digital circuits. The comprehensive evaluation and utilization of properties of Boolean functions allow, for instance, to decompose Boolean functions very efficiently; this can be applied not only in circuit design, but also in data mining. Other examples for the use of the BDC are the detection of hazards or cryptography. The knowledge of the BDC gives the scientists and engineers an extended insight into Boolean problems leading to new applications, e.g., the use of Boolean lattices of Boolean functions.
On the 1-Decidability of Boolean Algebras with One Distinguished Ideal
We describe the 1-decidable Boolean algebras with one distinguished ideal in terms of the computability of some set of predicates on the algebra and show the minimality of the conditions obtained.
Mathematics and computation: a theory revolutionizing technology and science
\"An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy, Mathematics and Computation provides a broad, conceptual overview of computational complexity theorythe mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field's insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society.\"- publisher
On the Criticality of Adaptive Boolean Network Robots
Systems poised at a dynamical critical regime, between order and disorder, have been shown capable of exhibiting complex dynamics that balance robustness to external perturbations and rich repertoires of responses to inputs. This property has been exploited in artificial network classifiers, and preliminary results have also been attained in the context of robots controlled by Boolean networks. In this work, we investigate the role of dynamical criticality in robots undergoing online adaptation, i.e., robots that adapt some of their internal parameters to improve a performance metric over time during their activity. We study the behavior of robots controlled by random Boolean networks, which are either adapted in their coupling with robot sensors and actuators or in their structure or both. We observe that robots controlled by critical random Boolean networks have higher average and maximum performance than that of robots controlled by ordered and disordered nets. Notably, in general, adaptation by change of couplings produces robots with slightly higher performance than those adapted by changing their structure. Moreover, we observe that when adapted in their structure, ordered networks tend to move to the critical dynamical regime. These results provide further support to the conjecture that critical regimes favor adaptation and indicate the advantage of calibrating robot control systems at dynamical critical states.
A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism
The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae , using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.
Reconstructing Classical Algebras via Ternary Operations
Although algebraic structures are frequently analyzed using unary and binary operations, they can also be effectively defined and unified using ternary operations. In this context, we introduce structures that contain two constants and a ternary operation. We demonstrate that these structures are isomorphic to various significant algebraic systems, including Boolean algebras, de Morgan algebras, MV-algebras, and (near-)rings of characteristic two. Our work highlights the versatility of ternary operations in describing and connecting diverse algebraic structures.
Boolean factor graph model for biological systems: the yeast cell-cycle network
Background The desire to understand genomic functions and the behavior of complex gene regulatory networks has recently been a major research focus in systems biology. As a result, a plethora of computational and modeling tools have been proposed to identify and infer interactions among biological entities. Here, we consider the general question of the effect of perturbation on the global dynamical network behavior as well as error propagation in biological networks to incite research pertaining to intervention strategies. Results This paper introduces a computational framework that combines the formulation of Boolean networks and factor graphs to explore the global dynamical features of biological systems. A message-passing algorithm is proposed for this formalism to evolve network states as messages in the graph. In addition, the mathematical formulation allows us to describe the dynamics and behavior of error propagation in gene regulatory networks by conducting a density evolution (DE) analysis. The model is applied to assess the network state progression and the impact of gene deletion in the budding yeast cell cycle. Simulation results show that our model predictions match published experimental data. Also, our findings reveal that the sample yeast cell-cycle network is not only robust but also consistent with real high-throughput expression data. Finally, our DE analysis serves as a tool to find the optimal values of network parameters for resilience against perturbations, especially in the inference of genetic graphs. Conclusion Our computational framework provides a useful graphical model and analytical tools to study biological networks. It can be a powerful tool to predict the consequences of gene deletions before conducting wet bench experiments because it proves to be a quick route to predicting biologically relevant dynamic properties without tunable kinetic parameters.