Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Alignment-free sequence analysis"
Sort by:
ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels
Background Although software tools abound for the comparison, analysis, identification, and classification of genomic sequences, taxonomic classification remains challenging due to the magnitude of the datasets and the intrinsic problems associated with classification. The need exists for an approach and software tool that addresses the limitations of existing alignment-based methods, as well as the challenges of recently proposed alignment-free methods. Results We propose a novel combination of supervised M achine L earning with D igital S ignal P rocessing, resulting in ML-DSP : an alignment-free software tool for ultrafast, accurate, and scalable genome classification at all taxonomic levels. We test ML-DSP by classifying 7396 full mitochondrial genomes at various taxonomic levels, from kingdom to genus, with an average classification accuracy of >97 % . A quantitative comparison with state-of-the-art classification software tools is performed, on two small benchmark datasets and one large 4322 vertebrate mtDNA genomes dataset. Our results show that ML-DSP overwhelmingly outperforms the alignment-based software MEGA7 (alignment with MUSCLE or CLUSTALW) in terms of processing time, while having comparable classification accuracies for small datasets and superior accuracies for the large dataset. Compared with the alignment-free software FFP (Feature Frequency Profile), ML-DSP has significantly better classification accuracy, and is overall faster. We also provide preliminary experiments indicating the potential of ML-DSP to be used for other datasets, by classifying 4271 complete dengue virus genomes into subtypes with 100% accuracy, and 4,710 bacterial genomes into phyla with 95.5% accuracy. Lastly, our analysis shows that the “Purine/Pyrimidine”, “Just-A” and “Real” numerical representations of DNA sequences outperform ten other such numerical representations used in the Digital Signal Processing literature for DNA classification purposes. Conclusions Due to its superior classification accuracy, speed, and scalability to large datasets, ML-DSP is highly relevant in the classification of newly discovered organisms, in distinguishing genomic signatures and identifying their mechanistic determinants, and in evaluating genome integrity.
New Computational Approach for Peptide Vaccine Design Against SARS-COV-2
The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. In this work, a precise computational approach has been established wherein two new mathematical parameters have been suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, w, is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation. This method has been, therefore, used to determine possible vaccine targets against SARS-CoV-2 by considering its surface-situated spike glycoprotein. The results of this model have been verified by a parallel analysis using the older approach of manually estimating the graphs describing the variation of conservativeness and surface-exposure across the protein sequence. Furthermore, the working of the method has been tested by applying it to find out peptide vaccine candidates for Zika and Hendra viruses respectively. A satisfactory consistency of the model results with pre-established results for both the test cases shows that this in silico alignment-free analysis proposed by the model is suitable not only to determine vaccine targets against SARS-CoV-2 but also ready to extend against other viruses.
AluMine: alignment-free method for the discovery of polymorphic Alu element insertions
Background Recently, alignment-free sequence analysis methods have gained popularity in the field of personal genomics. These methods are based on counting frequencies of short k -mer sequences, thus allowing faster and more robust analysis compared to traditional alignment-based methods. Results We have created a fast alignment-free method, AluMine, to analyze polymorphic insertions of Alu elements in the human genome. We tested the method on 2,241 individuals from the Estonian Genome Project and identified 28,962 potential polymorphic Alu element insertions. Each tested individual had on average 1,574 Alu element insertions that were different from those in the reference genome. In addition, we propose an alignment-free genotyping method that uses the frequency of insertion/deletion-specific 32-mer pairs to call the genotype directly from raw sequencing reads. Using this method, the concordance between the predicted and experimentally observed genotypes was 98.7%. The running time of the discovery pipeline is approximately 2 h per individual. The genotyping of potential polymorphic insertions takes between 0.4 and 4 h per individual, depending on the hardware configuration. Conclusions AluMine provides tools that allow discovery of novel Alu element insertions and/or genotyping of known Alu element insertions from personal genomes within few hours.
Benchmarking of alignment-free sequence comparison methods
Background Alignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined benchmarking consensus hampers their performance assessment. Results Here, we present a community resource ( http://afproject.org ) to establish standards for comparing alignment-free approaches across different areas of sequence-based research. We characterize 74 AF methods available in 24 software tools for five research applications, namely, protein sequence classification, gene tree inference, regulatory element detection, genome-based phylogenetic inference, and reconstruction of species trees under horizontal gene transfer and recombination events. Conclusion The interactive web service allows researchers to explore the performance of alignment-free tools relevant to their data types and analytical goals. It also allows method developers to assess their own algorithms and compare them with current state-of-the-art tools, accelerating the development of new, more accurate AF solutions.
Syncmers are more sensitive than minimizers for selecting conserved k ‑mers in biological sequences
Minimizers are widely used to select subsets of fixed-length substrings ( k -mers) from biological sequences in applications ranging from read mapping to taxonomy prediction and indexing of large datasets. The minimizer of a string of w consecutive k -mers is the k -mer with smallest value according to an ordering of all k -mers. Syncmers are defined here as a family of alternative methods which select k -mers by inspecting the position of the smallest-valued substring of length s < k within the k -mer. For example, a closed syncmer is selected if its smallest s -mer is at the start or end of the k -mer. At least one closed syncmer must be found in every window of length ( k − s ) k -mers. Unlike a minimizer, a syncmer is identified by its sequence alone, and is therefore synchronized in the following sense: if a given k -mer is selected from one sequence, it will also be selected from any other sequence. Also, minimizers can be deleted by mutations in flanking sequence, which cannot happen with syncmers. Experiments on minimizers with parameters used in the minimap2 read mapper and Kraken taxonomy prediction algorithm respectively show that syncmers can simultaneously achieve both lower density and higher conservation compared to minimizers.
MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores
Background Tools for accurately clustering biological sequences are among the most important tools in computational biology. Two pioneering tools for clustering sequences are CD-HIT and UCLUST , both of which are fast and consume reasonable amounts of memory; however, there is a big room for improvement in terms of cluster quality. Motivated by this opportunity for improving cluster quality, we applied the mean shift algorithm in MeShClust v1.0 . The mean shift algorithm is an instance of unsupervised learning. Its strong theoretical foundation guarantees the convergence to the true cluster centers. Our implementation of the mean shift algorithm in MeShClust v1.0 was a step forward. In this work, we scale up the algorithm by adapting an out-of-core strategy while utilizing alignment-free identity scores in a new tool: MeShClust v3.0 . Results We evaluated CD-HIT , MeShClust v1.0 , MeShClust v3.0 , and UCLUST on 22 synthetic sets and five real sets. These data sets were designed or selected for testing the tools in terms of scalability and different similarity levels among sequences comprising clusters. On the synthetic data sets, MeShClust v3.0 outperformed the related tools on all sets in terms of cluster quality. On two real data sets obtained from human microbiome and maize transposons, MeShClust v3.0 outperformed the related tools by wide margins, achieving 55%–300% improvement in cluster quality. On another set that includes degenerate viral sequences, MeShClust v3.0 came third. On two bacterial sets, MeShClust v3.0 was the only applicable tool because of the long sequences in these sets. MeShClust v3.0 requires more time and memory than the related tools; almost all personal computers at the time of this writing can accommodate such requirements. MeShClust v3.0 can estimate an important parameter that controls cluster membership with high accuracy. Conclusions These results demonstrate the high quality of clusters produced by MeShClust v3.0 and its ability to apply the mean shift algorithm to large data sets and long sequences. Because clustering tools are utilized in many studies, providing high-quality clusters will help with deriving accurate biological knowledge.
A new profiling approach for DNA sequences based on the nucleotides' physicochemical features for accurate analysis of SARS-CoV-2 genomes
Background The prevalence of the COVID-19 disease in recent years and its widespread impact on mortality, as well as various aspects of life around the world, has made it important to study this disease and its viral cause. However, very long sequences of this virus increase the processing time, complexity of calculation, and memory consumption required by the available tools to compare and analyze the sequences. Results We present a new encoding method, named PC-mer, based on the k-mer and physic-chemical properties of nucleotides. This method minimizes the size of encoded data by around 2  k times compared to the classical k-mer based profiling method. Moreover, using PC-mer, we designed two tools: 1) a machine-learning-based classification tool for coronavirus family members with the ability to recive input sequences from the NCBI database, and 2) an alignment-free computational comparison tool for calculating dissimilarity scores between coronaviruses at the genus and species levels. Conclusions PC-mer achieves 100% accuracy despite the use of very simple classification algorithms based on Machine Learning. Assuming dynamic programming-based pairwise alignment as the ground truth approach, we achieved a degree of convergence of more than 98% for coronavirus genus-level sequences and 93% for SARS-CoV-2 sequences using PC-mer in the alignment-free classification method. This outperformance of PC-mer suggests that it can serve as a replacement for alignment-based approaches in certain sequence analysis applications that rely on similarity/dissimilarity scores, such as searching sequences, comparing sequences, and certain types of phylogenetic analysis methods that are based on sequence comparison.
TreeWave: command line tool for alignment-free phylogeny reconstruction based on graphical representation of DNA sequences and genomic signal processing
Background Genomic sequence similarity comparison is a crucial research area in bioinformatics. Multiple Sequence Alignment (MSA) is the basic technique used to identify regions of similarity between sequences, although MSA tools are widely used and highly accurate, they are often limited by computational complexity, and inaccuracies when handling highly divergent sequences, which leads to the development of alignment-free (AF) algorithms. Results This paper presents TreeWave, a novel AF approach based on frequency chaos game representation and discrete wavelet transform of sequences for phylogeny inference. We validate our method on various genomic datasets such as complete virus genome sequences, bacteria genome sequences, human mitochondrial genome sequences, and rRNA gene sequences. Compared to classical methods, our tool demonstrates a significant reduction in running time, especially when analyzing large datasets. The resulting phylogenetic trees show that TreeWave has similar classification accuracy to the classical MSA methods based on the normalized Robinson-Foulds distances and Baker’s Gamma coefficients. Conclusions TreeWave is an open source and user-friendly command line tool for phylogeny reconstruction. It is a faster and more scalable tool that prioritizes computational efficiency while maintaining accuracy. TreeWave is freely available at https://github.com/nasmaB/TreeWave .
S-conLSH: alignment-free gapped mapping of noisy long reads
Background The advancement of SMRT technology has unfolded new opportunities of genome analysis with its longer read length and low GC bias. Alignment of the reads to their appropriate positions in the respective reference genome is the first but costliest step of any analysis pipeline based on SMRT sequencing. However, the state-of-the-art aligners often fail to identify distant homologies due to lack of conserved regions, caused by frequent genetic duplication and recombination. Therefore, we developed a novel alignment-free method of sequence mapping that is fast and accurate. Results We present a new mapper called S-conLSH that uses S paced con text based L ocality S ensitive H ashing. With multiple spaced patterns, S-conLSH facilitates a gapped mapping of noisy long reads to the corresponding target locations of a reference genome. We have examined the performance of the proposed method on 5 different real and simulated datasets. S-conLSH is at least 2 times faster than the recently developed method lordFAST. It achieves a sensitivity of 99%, without using any traditional base-to-base alignment, on human simulated sequence data. By default, S-conLSH provides an alignment-free mapping in PAF format. However, it has an option of generating aligned output as SAM-file, if it is required for any downstream processing. Conclusions S-conLSH is one of the first alignment-free reference genome mapping tools achieving a high level of sensitivity. The spaced -context is especially suitable for extracting distant similarities. The variable-length spaced-seeds or patterns add flexibility to the proposed algorithm by introducing gapped mapping of the noisy long reads. Therefore, S-conLSH may be considered as a prominent direction towards alignment-free sequence analysis.
CGRclust: Chaos Game Representation for twin contrastive clustering of unlabelled DNA sequences
Background Traditional supervised learning methods applied to DNA sequence taxonomic classification rely on the labor-intensive and time-consuming step of labelling the primary DNA sequences. Additionally, standard DNA classification/clustering methods involve time-intensive multiple sequence alignments, which impacts their applicability to large genomic datasets or distantly related organisms. These limitations indicate a need for robust, efficient, and scalable unsupervised DNA sequence clustering methods that do not depend on sequence labels or alignment. Results This study proposes CGRclust, a novel combination of unsupervised twin contrastive clustering of Chaos Game Representations (CGR) of DNA sequences, with convolutional neural networks (CNNs). To the best of our knowledge, CGRclust is the first method to use unsupervised learning for image classification (herein applied to two-dimensional CGR images) for clustering datasets of DNA sequences. CGRclust overcomes the limitations of traditional sequence classification methods by leveraging unsupervised twin contrastive learning to detect distinctive sequence patterns, without requiring DNA sequence alignment or biological/taxonomic labels. CGRclust accurately clustered twenty-five diverse datasets, with sequence lengths ranging from 664 bp to 100 kbp, including mitochondrial genomes of fish, fungi, and protists, as well as viral whole genome assemblies and synthetic DNA sequences. Compared with three recent clustering methods for DNA sequences (DeLUCS, i DeLUCS, and MeShClust v3.0.), CGRclust is the only method that surpasses 81.70% accuracy across all four taxonomic levels tested for mitochondrial DNA genomes of fish. Moreover, CGRclust also consistently demonstrates superior performance across all the viral genomic datasets. The high clustering accuracy of CGRclust on these twenty-five datasets, which vary significantly in terms of sequence length, number of genomes, number of clusters, and level of taxonomy, demonstrates its robustness, scalability, and versatility. Conclusion CGRclust is a novel, scalable, alignment-free DNA sequence clustering method that uses CGR images of DNA sequences and CNNs for twin contrastive clustering of unlabelled primary DNA sequences, achieving superior or comparable accuracy and performance over current approaches. CGRclust demonstrated enhanced reliability, by consistently achieving over 80% accuracy in more than 90% of the datasets analyzed. In particular, CGRclust performed especially well in clustering viral DNA datasets, where it consistently outperformed all competing methods.