Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3,750 result(s) for "Alkanes - chemistry"
Sort by:
Microbial production of short-chain alkanes
Microbes have already been engineered to produce diesel fuels, and now the microbial production of components of petrol (gasoline) including short-chain alkanes has been achieved using Escherichia coli strains metabolically engineered with components of fatty acid biosynthesis pathways. Engineering bacteria to pump gasoline High oil prices and the depletion of fossil resources have fuelled extensive research on the production of sustainable biofuels from renewable resources. Engineered microbes are one option, but until now microbes have not produced gasoline, a mixture of lighter liquid hydrocarbons in the range C4 to C12, in part because cellular metabolism favours the production of mainly long-chain fatty acids and their derivatives. Here Yong Jun Choi and Sang Yup Lee describe Escherichia coli strains engineered to produce short-chain alkanes, free fatty acids, fatty esters and fatty alcohols. The final engineered strain produced as much as 580.8 milligrams per litre of short-chain alkanes, primarily nonane and decane. The metabolic engineering strategies described here should be useful in designing microorganisms for the production of short-chain fatty acids and derivatives as many useful industrial fuels and chemicals. Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel has been reported, production of another much in demand transport fuel, petrol (gasoline), has not yet been demonstrated. Here we report the development of platform Escherichia coli strains that are capable of producing short-chain alkanes (SCAs; petrol), free fatty acids (FFAs), fatty esters and fatty alcohols through the fatty acyl (acyl carrier protein (ACP)) to fatty acid to fatty acyl-CoA pathway. First, the β-oxidation pathway was blocked by deleting the fadE gene to prevent the degradation of fatty acyl-CoAs generated in vivo . To increase the formation of short-chain fatty acids suitable for subsequent conversion to SCAs in vivo , the activity of 3-oxoacyl-ACP synthase (FabH) 1 , which is inhibited by unsaturated fatty acyl-ACPs 2 , was enhanced to promote the initiation of fatty acid biosynthesis by deleting the fadR gene; deletion of the fadR gene prevents upregulation of the fabA and fabB genes responsible for unsaturated fatty acids biosynthesis 3 . A modified thioesterase 4 was used to convert short-chain fatty acyl-ACPs to the corresponding FFAs, which were then converted to SCAs by the sequential reactions of E. coli fatty acyl-CoA synthetase, Clostridium acetobutylicum fatty acyl-CoA reductase and Arabidopsis thaliana fatty aldehyde decarbonylase. The final engineered strain produced up to 580.8 mg l −1 of SCAs consisting of nonane (327.8 mg l −1 ), dodecane (136.5 mg l −1 ), tridecane (64.8 mg l −1 ), 2-methyl-dodecane (42.8 mg l −1 ) and tetradecane (8.9 mg l −1 ), together with small amounts of other hydrocarbons. Furthermore, this platform strain could produce short-chain FFAs using a fadD -deleted strain, and short-chain fatty esters by introducing the Acinetobacter sp. ADP1 wax ester synthase ( atfA ) 5 and the E. coli mutant alcohol dehydrogenase ( adhE mut ) 6 .
Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis
The asymmetric cross-coupling reaction is developed as a straightforward strategy toward 1,1-diaryl alkanes, which are a key skeleton in a series of natural products and bioactive molecules in recent years. Here we report an enantioselective benzylic C(sp 3 )−H bond arylation via photoredox/nickel dual catalysis. Sterically hindered chiral biimidazoline ligands are designed for this asymmetric cross-coupling reaction. Readily available alkyl benzenes and aryl bromides with various functional groups tolerance can be easily and directly transferred to useful chiral 1,1-diaryl alkanes including pharmaceutical intermediates and bioactive molecules. This reaction proceeds smoothly under mild conditions without the use of external redox reagents. Chiral 1,1-diaryl alkanes are important targets in pharmaceutical industry. Here, the authors report report a redox-neutral enantioselective benzylic C−H bond arylation via photoredox/nickel dual catalysis accessing chiral 1,1-diarylalkane compounds under mild conditions.
Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)-H functionalization
The direct and selective C(sp 3 )-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp 3 )-H precursor, a SO 2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds. The direct and selective C(sp 3 )-H functionalization of cycloalkanes and alkanes is useful in organic synthesis but its application to asymmetric catalysis has been less explored. Here, the authors demonstrate the incorporation of a dual asymmetric photocatalyst which leads to the development of asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers.
Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes
The dehydrogenative alkenylation of C-H bonds with alkenes represents an atom- and step-economical approach for olefin synthesis and molecular editing. Site-selective alkenylation of alkanes and aldehydes with the C-H substrate as the limiting reagent holds significant synthetic value. We herein report a photocatalytic method for the direct alkenylation of alkanes and aldehydes with aryl alkenes in the absence of any external oxidant. A diverse range of commodity feedstocks and pharmaceutical compounds are smoothly alkenylated in useful yields with the C-H partner as the limiting reagent. The late-stage alkenylation of complex molecules occurs with high levels of site selectivity for sterically accessible and electron-rich C-H bonds. This strategy relies on the synergistic combination of direct hydrogen atom transfer photocatalysis with cobaloxime-mediated hydrogen-evolution cross-coupling, which promises to inspire additional perspectives for selective C-H functionalizations in a green manner. Dehydrogenative alkenylation of C-H bonds is an atom-economical approach to prepare more complex olefins. Here, the authors use a combination of decatungstate and a cobaloxime catalyst for the photocatalytic dehydrogenative alkenylation of alkanes and aliphatic aldehydes with aryl alkenes.
The fluorination effect of fluoroamphiphiles in cytosolic protein delivery
Direct delivery of proteins into cells avoids many drawbacks of gene delivery, and thus has emerging applications in biotherapy. However, it remains a challenging task owing to limited charges and relatively large size of proteins. Here, we report an efficient protein delivery system via the co-assembly of fluoroamphiphiles and proteins into nanoparticles. Fluorous substituents on the amphiphiles play essential roles in the formation of uniform nanoparticles, avoiding protein denaturation, efficient endocytosis, and maintaining low cytotoxicity. Structure-activity relationship studies reveal that longer fluorous chain length and higher fluorination degree contribute to more efficient protein delivery, but excess fluorophilicity on the polymer leads to the pre-assembly of fluoroamphiphiles into stable vesicles, and thus failed protein encapsulation and cytosolic delivery. This study highlights the advantage of fluoroamphiphiles over other existing strategies for intracellular protein delivery. Proteins can serve as means of medical treatment, but their efficient delivery to cells is difficult. Here, the authors present a type of polymers, fluoroamphiphiles, acting as chemical chaperones that can facilitate the import of proteins into the inner compartment, i.e. cytosol, of cells.
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid–lipid and lipid–membrane protein interactions involved in the regulation of cellular functions. Cell-sized asymmetric giant lipid vesicles containing a very small amount of organic solvent have now been formed via inhomogeneous break-up of a lipid microtube that was generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles were used to investigate the dynamic responses of lipid molecules and the effect of asymmetry on biochemical reactions.
Structure and mechanism of the alkane-oxidizing enzyme AlkB
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms. Alkane monooxygenase (AlkB) plays a key role in the global carbon cycle and remediation of oil spills. Here, the authors report the cryo-EM structure of AlkB to provide insight into the catalytic mechanism and substrate selectivity.
Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep
At marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins to the sediment-water interface. Cold seep sediments are known to host taxonomically diverse microorganisms, but little is known about their metabolic potential and depth distribution in relation to hydrocarbon and electron acceptor availability. Here we combined geophysical, geochemical, metagenomic and metabolomic measurements to profile microbial activities at a newly discovered cold seep in the deep sea. Metagenomic profiling revealed compositional and functional differentiation between near-surface sediments and deeper subsurface layers. In both sulfate-rich and sulfate-depleted depths, various archaeal and bacterial community members are actively oxidizing thermogenic hydrocarbons anaerobically. Depth distributions of hydrocarbon-oxidizing archaea revealed that they are not necessarily associated with sulfate reduction, which is especially surprising for anaerobic ethane and butane oxidizers. Overall, these findings link subseafloor microbiomes to various biochemical mechanisms for the anaerobic degradation of deeply-sourced thermogenic hydrocarbons. Describing anaerobic short chain alkane degrading archaea at a newly discovered cold seep, the authors here suggest that these organisms play much more important roles in submarine carbon cycling globally than previously thought.
Reconstitution of Plant Alkane Biosynthesis in Yeast Demonstrates That Arabidopsis ECERIFERUM1 and ECERIFERUM3 Are Core Components of a Very-Long-Chain Alkane Synthesis Complex
In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.