Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
150
result(s) for
"Altitudes Measurement Experiments."
Sort by:
How high is high? : science projects with height and depth
by
Gardner, Robert, 1929- author
,
LaBaff, Tom, illustrator
,
Gardner, Robert, 1929- Hot science experiments
in
Measurement Experiments Juvenile literature.
,
Altitudes Measurement Experiments Juvenile literature.
,
Science projects Juvenile literature.
2015
\"Simple science experiments about measurement of height and depth using everyday items with many experiments that can be turned into science fair projects.\"-- Provided by publisher.
Study of optical scattering properties and direct radiative effects of high-altitude cirrus clouds in Barcelona, Spain, with 4 years of lidar measurements
by
Gil-Díaz, Cristina
,
Sourdeval, Odran
,
Saiprakash, Athulya
in
Actinometers
,
Aerosols
,
Altitude
2025
Cloud–radiation interaction still drives large uncertainties in climate models, and its estimation is key to make more accurate predictions. In this context, high-altitude cirrus clouds play a fundamental role because (1) they have a high occurrence frequency globally and (2) they are the only cloud that can readily cool or warm the atmosphere during daytime, depending on their properties. This study presents a comprehensive analysis of optical scattering properties and direct radiative effect of cirrus clouds based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar. First, we introduce a novel approach of a self-consistent scattering model for cirrus clouds to determine their optical scattering properties at different wavelengths using only the extinction coefficient and cloud temperature. Second, we calculate the direct radiative effects of cirrus clouds with the discrete ordinates method, and we validate our results with SolRad-Net pyranometers and NOAA-20 measurements. Third, we present a case study analysing the direct radiative effect of a cirrus cloud along its back-trajectory using data from the Chemical LAgrangian Model of the Stratosphere with microphysics scheme for Ice clouds formation (CLaMS-Ice). The results show that the cirrus clouds with an average ice water content of 4.97 ± 5.53 mg m−3, in the nighttime, have a positive direct radiative effect at the top of the atmosphere (TOA; +40.4 W m−2) almost twice than at the bottom of the atmosphere (BOA; +22.1 W m−2); in the daytime, they have generally a negative direct radiative effect at BOA (−11.5 W m−2, 82 % of the cases) and always a positive effect at TOA (+14.2 W m−2). In these simulations, the influence of the lower layer aerosols is negligible in the cirrus direct radiative effects, with a bias (denoted BIAS) of −1.2 %. For the case study, the net direct radiative effects produced by the cirrus cloud, are from 0 to +40 W m−2 at TOA and from −51 to +20 W m−2 at BOA. This study reveals that the complexity of the cirrus cloud direct radiative effect calculation lies in the fact that it is highly sensitive to the cirrus scene properties.
Journal Article
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
by
Bailey, Sean C. C.
,
Craine, Nick
,
Stratsilatau, Aliaksei
in
Acoustics
,
Air temperature
,
Aircraft
2024
This study investigates the use of a balloon-launched uncrewed aircraft system (UAS) for the measurement of turbulence in the troposphere and lower stratosphere. The UAS was a glider which could conduct an automated descent following a designated flight trajectory and was equipped with in situ sensors for measuring thermodynamic and kinematic atmospheric properties. In addition, this aircraft was equipped with an infrasonic microphone to assess its suitability for the remote detection of clear-air turbulence. The capabilities of the UAS and sensing systems were tested during three flights conducted in New Mexico, USA, in 2021. It was found that the profiles of temperature, humidity, and horizontal winds measured during descent were in broad agreement with those made by radiosonde data published by the US National Weather Service, separated by up to 380 km spatially and by 3 to 5 h temporally. Winds measured during controlled flight descent were consistent with the winds measured by global-positioning-system-derived velocity during balloon ascent. During controlled descent with this particular payload, a nominal vertical resolution on the order of 1 m was achieved for temperature, relative humidity, and pressure with a nominal vertical resolution of the wind velocity vector on the order of 0.1 m; the aircraft had a glide slope angle from 1 to 4° during this time. Analysis approaches were developed that provided turbulent kinetic energy and dissipation rate, but it was found that the corresponding Richardson number was sensitive to the methodology used to determine the vertical gradients from a single flight. The low-frequency content of the infrasonic microphone signal was observed to qualitatively align with long-wavelength wind velocity fluctuations detected at high altitude. Moreover, the microphone measured more broadband frequency content when the aircraft approached turbulence produced by the boundary layer.
Journal Article
THE NASA AIRBORNE TROPICAL TROPOPAUSE EXPERIMENT
by
Lawson, R. Paul
,
Bui, Thaopaul V.
,
Selkirk, Henry B.
in
Aeronautics
,
Airborne sensing
,
Aircraft
2017
The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).
Journal Article
Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption
by
Quaglia, Ilaria
,
Pitari, Giovanni
,
Brühl, Christoph
in
Aerosol clouds
,
Aerosol models
,
Aerosol properties
2023
A previous model intercomparison of the Tambora aerosol cloud has highlighted substantial differences among simulated volcanic aerosol properties in the pre-industrial stratosphere and has led to questions about the applicability of global aerosol models for large-magnitude explosive eruptions prior to the observational period. Here, we compare the evolution of the stratospheric aerosol cloud following the well-observed June 1991 Mt. Pinatubo eruption simulated with six interactive stratospheric aerosol microphysics models to a range of observational data sets.Our primary focus is on the uncertainties regarding initial SO2 emission following the Pinatubo eruption, as prescribed in the Historical Eruptions SO2 Emission Assessment experiments (HErSEA), in the framework of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). Six global models with interactive aerosol microphysics took part in this study: ECHAM6-SALSA, EMAC, ECHAM5-HAM, SOCOL-AERv2, ULAQ-CCM, and UM-UKCA. Model simulations are performed by varying the SO2 injection amount (ranging between 5 and 10 Tg S) and the altitude of injection (between 18–25 km).The comparisons show that all models consistently demonstrate faster reduction from the peak in sulfate mass burden in the tropical stratosphere. Most models also show a stronger transport towards the extratropics in the Northern Hemisphere, at the expense of the observed tropical confinement, suggesting a much weaker subtropical barrier in all the models, which results in a shorter e-folding time compared to the observations. Furthermore, simulations in which more than 5 Tg S in the form of SO2 is injected show an initial overestimation of the sulfate burden in the tropics and, in some models, in the Northern Hemisphere and a large surface area density a few months after the eruption compared to the values measured in the tropics and the in situ measurements over Laramie. This draws attention to the importance of including processes such as the ash injection for the removal of the initial SO2 and aerosol lofting through local heating.
Journal Article
Estimation of Winter Wheat SPAD Values Based on UAV Multispectral Remote Sensing
2023
Unmanned aerial vehicle (UAV) multispectral imagery has been applied in the remote sensing of wheat SPAD (Soil and Plant Analyzer Development) values. However, existing research has yet to consider the influence of different growth stages and UAV flight altitudes on the accuracy of SPAD estimation. This study aims to optimize UAV flight strategies and incorporate multiple feature selection techniques and machine learning algorithms to enhance the accuracy of the SPAD value estimation of different wheat varieties across growth stages. This study sets two flight altitudes (20 and 40 m). Multispectral images were collected for four winter wheat varieties during the green-up and jointing stages. Three feature selection methods (Pearson, recursive feature elimination (RFE), and correlation-based feature selection (CFS)) and four machine learning regression models (elastic net, random forest (RF), backpropagation neural network (BPNN), and extreme gradient boosting (XGBoost)) were combined to construct SPAD value estimation models for individual growth stages as well as across growth stages. The CFS-RF (40 m) model achieved satisfactory results (green-up stage: R2 = 0.7270, RPD = 2.0672, RMSE = 1.1835, RRMSE = 0.0259; jointing stage: R2 = 0.8092, RPD = 2.3698, RMSE = 2.3650, RRMSE = 0.0487). For cross-growth stage modeling, the optimal prediction results for SPAD values were achieved at a flight altitude of 40 m using the Pearson-XGBoost model (R2 = 0.8069, RPD = 2.3135, RMSE = 2.0911, RRMSE = 0.0442). These demonstrate that the flight altitude of UAVs significantly impacts the estimation accuracy, and the flight altitude of 40 m (with a spatial resolution of 2.12 cm) achieves better SPAD value estimation than that of 20 m (with a spatial resolution of 1.06 cm). This study also showed that the optimal combination of feature selection methods and machine learning algorithms can more accurately estimate winter wheat SPAD values. In addition, this study includes multiple winter wheat varieties, enhancing the generalizability of the research results and facilitating future real-time and rapid monitoring of winter wheat growth.
Journal Article
Estimation of Wind Vector Profile Using a Hexarotor Unmanned Aerial Vehicle and Its Application to Meteorological Observation up to 1000 m above Surface
2018
Small unmanned aerial vehicles (UAVs), also known as drones, have recently become promising tools in various fields. We investigated the feasibility of wind vector profile measurement using an ultrasonic anemometer installed on a 1-m-wide hexarotor UAV. Wind vectors measured by the UAV were compared to observations by a 55-m-high meteorological tower, over a wide range of wind speed conditions up to 11 m s −1 , which is a higher wind speed range than those used in previous studies. The wind speeds and directions measured by the UAV and the tower were in good agreement, with a root-mean-square error of 0.6 m s −1 and 12° for wind speed and direction, respectively. The developed method was applied to field meteorological observations near a volcano, and the wind vector profiles, along with temperature and humidity, were measured by the UAV for up to an altitude of 1000 m, which is a higher altitude range than those used in previous studies. The wind vector profile measured by the UAV was compared with Doppler lidar measurements (collected several kilometers away from the UAV measurements) and was found to be qualitatively similar to that captured by the Doppler lidar, and it adequately represented the features of the atmospheric boundary layer. The feasibility of wind profile measurement up to 1000 m by a small rotor-based UAV was clarified over a wide range of wind speed conditions.
Journal Article
The SALTENA Experiment
by
Ginot, Patrick
,
Laj, Paolo
,
Wiedensohler, Alfred
in
Aerosol nucleation
,
Aerosol particulates
,
Aerosol source
2022
This paper presents an introduction to the Southern Hemisphere High Altitude Experiment on Particle Nucleation and Growth (SALTENA). This field campaign took place between December 2017 and June 2018 (wet to dry season) at Chacaltaya (CHC), a GAW (Global Atmosphere Watch) station located at 5,240 m MSL in the Bolivian Andes. Concurrent measurements were conducted at two additional sites in El Alto (4,000 m MSL) and La Paz (3,600 m MSL). The overall goal of the campaign was to identify the sources, understand the formation mechanisms and transport, and characterize the properties of aerosol at these stations. State-of-the-art instruments were brought to the station complementing the ongoing permanent GAW measurements, to allow a comprehensive description of the chemical species of anthropogenic and biogenic origin impacting the station and contributing to new particle formation. In this overview we first provide an assessment of the complex meteorology, airmass origin, and boundary layer–free troposphere interactions during the campaign using a 6-month high-resolution Weather Research and Forecasting (WRF) simulation coupled with Flexible Particle dispersion model (FLEXPART). We then show some of the research highlights from the campaign, including (i) chemical transformation processes of anthropogenic pollution while the air masses are transported to the CHC station from the metropolitan area of La Paz–El Alto, (ii) volcanic emissions as an important source of atmospheric sulfur compounds in the region, (iii) the characterization of the compounds involved in new particle formation, and (iv) the identification of long-range-transported compounds from the Pacific or the Amazon basin. We conclude the article with a presentation of future research foci. The SALTENA dataset highlights the importance of comprehensive observations in strategic high-altitude locations, especially the undersampled Southern Hemisphere.
Journal Article
The BIRDIES Experiment: Measuring Beryllium Isotopes to Resolve Dynamics in the Stratosphere
2024
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in the mid-stratosphere called Beryllium Isotopes for Resolving Dynamics in the Stratosphere (BIRDIES). BIRDIES targeted gravity waves produced by tropopause-overshooting convection to study their propagation and impact on STE dynamics, including the production of turbulence in the stratosphere. Two custom-designed payloads called FiSH and GASP were flown at altitudes approaching 30 km to measure in situ turbulence and beryllium isotopes (on aerosols), respectively. These were flown on nine high-altitude balloon flights over Kansas, USA, in summer 2022. The atmospheric samples were augmented with a ground-based rainfall collection targeting isotopic signatures of deep convection overshooting. Our GASP samples yielded mostly negligible amounts of both 10Be and 7Be collected in the mid-stratosphere but led to design improvements to increase aerosol capture in low-pressure environments. Observations from FiSH and the precipitation collection were more fruitful. FiSH showed the presence of turbulent velocity, temperature, and acoustic fluctuations in the stratosphere, including length scales in the infra-sonic range and inertial subrange that indicated times of elevated turbulence. The precipitation collection, and subsequent statistical analysis, showed that large spatial datasets of 10Be/7Be can be measured in individual rainfall events with minimum terrestrial contamination. While the spatial patterns in rainfall suggested some evidence for overshooting convection, inter-event temporal variability was clearly observed and predicted with good agreement using the 3D chemical transport model GEOS-CHEM.
Journal Article
Reduced ice number concentrations in contrails from low-aromatic biofuel blends
2021
Sustainable aviation fuels can reduce contrail ice numbers and radiative forcing by contrail cirrus. We measured apparent ice emission indices for fuels with varying aromatic content at altitude ranges of 9.1–9.8 and 11.4–11.6 km. Measurement data were collected during the ECLIF II/NDMAX flight experiment in January 2018. The fuels varied in both aromatic quantity and type. Between a sustainable aviation fuel blend and a reference fuel Jet A-1, a maximum reduction in apparent ice emission indices of 40 % was found. We show vertical ice number and extinction distributions for three different fuels and calculate representative contrail optical depths. Optical depths of contrails (0.5–3 min in age) were reduced by 40 % to 52 % for a sustainable aviation fuel compared to the reference fuel. Our measurements suggest that sustainable aviation fuels result in reduced ice particle numbers, extinction coefficients, optical depth and climate impact from contrails.
Journal Article