Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Amino Acid Transport System ASC - chemistry"
Sort by:
Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models
2018
A small molecule selectively targeting the cell-surface glutamine transporter ASCT2 disrupts glutamine signaling and metabolism. This compound displays low toxicity and strong antitumor activity in preclinical
in vitro
and
in vivo
models, thus holding promise as a treatment for glutamine-dependent tumors in a clinical setting.
The unique metabolic demands of cancer cells underscore potentially fruitful opportunities for drug discovery in the era of precision medicine. However, therapeutic targeting of cancer metabolism has led to surprisingly few new drugs to date. The neutral amino acid glutamine serves as a key intermediate in numerous metabolic processes leveraged by cancer cells, including biosynthesis, cell signaling, and oxidative protection. Herein we report the preclinical development of V-9302, a competitive small molecule antagonist of transmembrane glutamine flux that selectively and potently targets the amino acid transporter ASCT2. Pharmacological blockade of ASCT2 with V-9302 resulted in attenuated cancer cell growth and proliferation, increased cell death, and increased oxidative stress, which collectively contributed to antitumor responses
in vitro
and
in vivo
. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in oncology, representing a new class of targeted therapy and laying a framework for paradigm-shifting therapies targeting cancer cell metabolism.
Journal Article
Cryo-EM structure of the human neutral amino acid transporter ASCT2
2018
Human ASCT2 belongs to the SLC1 family of secondary transporters and is specific for the transport of small neutral amino acids. ASCT2 is upregulated in cancer cells and serves as the receptor for many retroviruses; hence, it has importance as a potential drug target. Here we used single-particle cryo-EM to determine a structure of the functional and unmodified human ASCT2 at 3.85-Å resolution. ASCT2 forms a homotrimeric complex in which each subunit contains a transport and a scaffold domain. Prominent extracellular extensions on the scaffold domain form the predicted docking site for retroviruses. Relative to structures of other SLC1 members, ASCT2 is in the most extreme inward-oriented state, with the transport domain largely detached from the central scaffold domain on the cytoplasmic side. This domain detachment may be required for substrate binding and release on the intracellular side of the membrane.
Journal Article
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer
by
Ryan, Renae
,
Wu, Qianyi
,
Vandenberg, Robert
in
Alanine
,
Amino Acid Transport System ASC - antagonists & inhibitors
,
Amino Acid Transport System ASC - chemistry
2020
The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues Glt
Ph
and Glt
Tk
have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.
Journal Article
Discovery and Synthesis of Hydroxy-l-Proline Blockers of the Neutral Amino Acid Transporters SLC1A4 (ASCT1) and SLC1A5 (ASCT2)
by
Kavanaugh, Michael P.
,
Esslinger, C. Sean
,
Natale, Nicholas R.
in
alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs)
,
Amino Acid Transport System ASC - antagonists & inhibitors
,
Amino Acid Transport System ASC - chemistry
2024
As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.
Journal Article
Targeting cancer glutamine dependency with a first-in-class inhibitor of the mitochondrial glutamine transporter SLC1A5_var
2025
The mitochondrial glutamine transporter SLC1A5_var plays a central role in the metabolic reprogramming of cancer cells by facilitating glutamine import into mitochondria for energy production and redox homeostasis. Despite its critical function, the development of effective and selective inhibitors targeting SLC1A5_var has remained a significant challenge. Here, we introduce iMQT_020, a selective allosteric inhibitor identified through structure-based screening. iMQT_020 disrupts the trimeric assembly of SLC1A5_var, causing metabolic crisis in cancer cells and selectively suppressing their growth. Mechanistically, iMQT_020 reduces glutamine anaplerosis and oxidative phosphorylation, resulting in a broad disruption of cancer metabolism. Additionally, iMQT_020 treatment epigenetically upregulates PD-L1 expression, enhancing the efficacy of combination therapies with anti-PD-L1 immune checkpoint inhibitors. These findings highlight the therapeutic potential of targeting SLC1A5_var as a critical metabolic vulnerability in cancer and demonstrate that targeting allosteric interprotomer interactions is a novel and promising therapeutic strategy for cancer treatment.
Glutamine addiction is a hallmark of many cancers. iMQT_020, a first-in-class allosteric inhibitor of the mitochondrial glutamine transporter SLC1A5_var, disrupts glutamine-dependent mitochondrial metabolism, selectively killing cancer cells and enhancing immune checkpoint inhibitor efficacy.
Journal Article
Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2
by
Chiariello, Maria Gabriella
,
Borowska, Anna M.
,
Garaeva, Alisa A.
in
101/28
,
631/45/612/1237
,
631/535/1258/1259
2024
ASCT2 is an obligate exchanger of neutral amino acids, contributing to cellular amino acid homeostasis. ASCT2 belongs to the same family (SLC1) as Excitatory Amino Acid Transporters (EAATs) that concentrate glutamate in the cytosol. The mechanism that makes ASCT2 an exchanger rather than a concentrator remains enigmatic. Here, we employ cryo-electron microscopy and molecular dynamics simulations to elucidate the structural basis of the exchange mechanism of ASCT2. We establish that ASCT2 binds three Na
+
ions per transported substrate and visits a state that likely acts as checkpoint in preventing Na
+
ion leakage, both features shared with EAATs. However, in contrast to EAATs, ASCT2 retains one Na
+
ion even under Na
+
-depleted conditions. We demonstrate that ASCT2 cannot undergo the structural transition in TM7 that is essential for the concentrative transport cycle of EAATs. This structural rigidity and the high-affinity Na
+
binding site effectively confine ASCT2 to an exchange mode.
ASCT2 is a Na
+
-dependent obligatory amino acid exchanger. Here, the authors untangle the structural basis of the exchange mechanism in ASCT2, revealing that structural rigidity and a high-affinity Na
+
binding site effectively confine ASCT2 to an exchange mode.
Journal Article
Cysteine 467 of the ASCT2 Amino Acid Transporter Is a Molecular Determinant of the Antiport Mechanism
by
Indiveri, Cesare
,
Scalise, Mariafrancesca
,
Pochini, Lorena
in
Amino Acid Substitution
,
Amino Acid Transport System ASC - chemistry
,
Amino Acid Transport System ASC - genetics
2022
The plasma membrane transporter ASCT2 is a well-known Na+-dependent obligatory antiporter of neutral amino acids. The crucial role of the residue C467 in the recognition and binding of the ASCT2 substrate glutamine, has been highlighted by structure/function relationship studies. The reconstitution in proteoliposomes of the human ASCT2 produced in P. pastoris is here employed to unveil another role of the C467 residue in the transport reaction. Indeed, the site-directed mutant C467A displayed a novel property of the transporter, i.e., the ability of mediating a low but measurable unidirectional transport of [3H]-glutamine. This reaction conforms to the main features of the ASCT2-mediated transport, namely the Na+-dependence, the pH dependence, the stimulation by cholesterol included in the proteoliposome membrane, and the specific inhibition by other common substrates of the reconstituted human ASCT2. Interestingly, the WT protein cannot catalyze the unidirectional transport of [3H]-glutamine, demonstrating an unspecific phenomenon. This difference is in favor of a structural conformational change between a WT and C467A mutant that triggers the appearance of the unidirectional flux; this feature has been investigated by comparing the available 3D structures in two different conformations, and two homology models built on the basis of hEAAT1 and GLTPh.
Journal Article
Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation
by
Bonin, Paul D
,
Plotnikova, Olga
,
Dumlao, Darren
in
Alanine
,
Amino Acid Transport System ASC - chemistry
,
Amino Acid Transport System ASC - metabolism
2019
Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.
Journal Article
Cys Site-Directed Mutagenesis of the Human SLC1A5 (ASCT2) Transporter: Structure/Function Relationships and Crucial Role of Cys467 for Redox Sensing and Glutamine Transport
by
Indiveri, Cesare
,
Pochini, Lorena
,
Pingitore, Piero
in
amino acid
,
Amino Acid Transport System ASC - chemistry
,
Amino Acid Transport System ASC - genetics
2018
The human plasma membrane transporter ASCT2 is responsible for mediating Na- dependent antiport of neutral amino acids. New insights into structure/function relationships were unveiled by a combined approach of recombinant over-expression, site-directed mutagenesis, transport assays in proteoliposomes and bioinformatics. WT and Cys mutants of hASCT2 were produced in P. pastoris and purified for functional assay. The reactivity towards SH reducing and oxidizing agents of WT protein was investigated and opposite effects were revealed; transport activity increased upon treatment with the Cys reducing agent DTE, i.e., when Cys residues were in thiol (reduced) state. Methyl-Hg, which binds to SH groups, was able to inhibit WT and seven out of eight Cys to Ala mutants. On the contrary, C467A loses the sensitivity to both DTE activation and Methyl-Hg inhibition. The C467A mutant showed a Km for Gln one order of magnitude higher than that of WT. Moreover, the C467 residue is localized in the substrate binding region of the protein, as suggested by bioinformatics on the basis of the EAAT1 structure comparison. Taken together, the experimental data allowed identifying C467 residue as crucial for substrate binding and for transport activity modulation of hASCT2.
Journal Article
Ligand Discovery for the Alanine-Serine-Cysteine Transporter (ASCT2, SLC1A5) from Homology Modeling and Virtual Screening
by
Albers, Thomas
,
Gameiro, Armanda
,
Colas, Claire
in
Algorithms
,
Amino Acid Sequence
,
Amino Acid Transport System ASC - chemistry
2015
The Alanine-Serine-Cysteine transporter ASCT2 (SLC1A5) is a membrane protein that transports neutral amino acids into cells in exchange for outward movement of intracellular amino acids. ASCT2 is highly expressed in peripheral tissues such as the lung and intestines where it contributes to the homeostasis of intracellular concentrations of neutral amino acids. ASCT2 also plays an important role in the development of a variety of cancers such as melanoma by transporting amino acid nutrients such as glutamine into the proliferating tumors. Therefore, ASCT2 is a key drug target with potentially great pharmacological importance. Here, we identify seven ASCT2 ligands by computational modeling and experimental testing. In particular, we construct homology models based on crystallographic structures of the aspartate transporter GltPh in two different conformations. Optimization of the models' binding sites for protein-ligand complementarity reveals new putative pockets that can be targeted via structure-based drug design. Virtual screening of drugs, metabolites, fragments-like, and lead-like molecules from the ZINC database, followed by experimental testing of 14 top hits with functional measurements using electrophysiological methods reveals seven ligands, including five activators and two inhibitors. For example, aminooxetane-3-carboxylate is a more efficient activator than any other known ASCT2 natural or unnatural substrate. Furthermore, two of the hits inhibited ASCT2 mediated glutamine uptake and proliferation of a melanoma cancer cell line. Our results improve our understanding of how substrate specificity is determined in amino acid transporters, as well as provide novel scaffolds for developing chemical tools targeting ASCT2, an emerging therapeutic target for cancer and neurological disorders.
Journal Article