Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
967
result(s) for
"Aminoglycosides - chemistry"
Sort by:
Sophisticated natural products as antibiotics
by
Lee, Richard E.
,
Hiller, Sebastian
,
Schneider, Tanja
in
45/23
,
631/326/22/1290
,
639/638/92/609
2024
In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of ‘undruggable’ targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.
This Review examines the diverse strategies utilized by naturally occurring antibiotics and suggests how they have provided, and will in future provide, inspiration for the design of novel antibiotics.
Journal Article
Aminoglycoside interactions and impacts on the eukaryotic ribosome
by
Blanchard, Scott C.
,
Djumagulov, Muminjon
,
Chang, Cheng-Wei Tom
in
Aminoglycoside antibiotics
,
Aminoglycosides
,
Aminoglycosides - chemistry
2017
Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored. Here, we use the combination of X-ray crystallography and single-molecule FRET analysis to reveal the interactions of distinct classes of aminoglycosides with the 80S eukaryotic ribosome. Crystal structures of the 80S ribosome in complex with paromomycin, geneticin (G418), gentamicin, and TC007, solved at 3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding sites within the large and small subunits, wherein the 6′-hydroxyl substituent in ring I serves as a key determinant of binding to the canonical eukaryotic ribosomal decoding center. Multivalent binding interactions with the human ribosome are also evidenced through their capacity to affect large-scale conformational dynamics within the pretranslocation complex that contribute to multiple aspects of the translation mechanism. The distinct impacts of the aminoglycosides examined suggest that their chemical composition and distinct modes of interaction with the ribosome influence PTC read-through efficiency. These findings provide structural and functional insights into aminoglycoside-induced impacts on the eukaryotic ribosome and implicate pleiotropic mechanisms of action beyond decoding.
Journal Article
Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions
2017
Pentoses and hexoses contain more than three oxygen-bearing stereocentres and are ideal starting materials for the synthesis of multiply oxygenated natural products such as sagittamide D, maitotoxin and hikizimycin. Here we demonstrate new radical–radical homocoupling reactions of sugar derivatives with minimal perturbation of their chiral centres. The radical exchange procedure using Et
3
B/O
2
converted sugar-derived α-alkoxyacyl tellurides into α-alkoxy radicals via decarbonylation and rapidly dimerized the monomeric radicals. The robustness of this process was demonstrated by a single-step preparation of 12 stereochemically diverse dimers with 6–10 secondary hydroxy groups, including the C5–C10 stereohexad of sagittamide D and the enantiomer of the C51–C60 stereodecad of maitotoxin. Furthermore, the optimally convergent radical–radical cross-coupling reaction achieved a one-step assembly of the protected C1–C11 oxygenated carbon chain of the anthelmintic hikizimycin. These exceptionally efficient homo- and heterocoupling methods together provide a powerful strategy for the expedited total synthesis of contiguously hydroxylated natural products.
Pentoses and hexoses represent important structural motifs in bioactive secondary metabolites, though their synthesis often requires several elongation steps. Now, a method for radical–radical coupling reactions of sugar derivatives enables the single-step preparation of the oxygenated carbon chains of several natural products, including sagittamide D, maitotoxin and hikizimycin.
Journal Article
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria
by
Pham Dung Thuy Nguyen
,
Khan Fazlurrahman
,
Young-Mog, Kim
in
Aminoglycoside antibiotics
,
Aminoglycosides
,
Antibiotics
2020
Aminoglycosides are one of the common classes of antibiotics that have been widely used for treating infections caused by pathogenic bacteria. The mechanism of bactericidal action by aminoglycosides is well-known, by which it terminates the cytoplasmic protein synthesis. However, the potentials of aminoglycosides become hindered when facing the evolution of bacterial resistance mechanisms. Among multiple resistance mechanisms displayed by bacteria against antibiotics, the formation of biofilm is the mechanism that provides a barrier for antibiotics to reach the cellular level. Bacteria present in the biofilm also get protection against the impact of host immune responses, harsh environmental conditions, and other antimicrobial treatments. Hence, with the multifaceted resistance developed by biofilm-forming pathogenic bacteria, antibiotics are therefore discontinued for further applications. However, the recent research developed several alternative strategies such as optimization of the active concentration, modification of the environmental conditions, modification of the chemical structure, combinatorial application with other active agents, and formulation with biocompatible carrier materials to revitalize and exploit the new potential of aminoglycosides. The present review article describes the above mentioned multiple approaches and possible mechanisms for the application of aminoglycosides to treat biofilm-associated infections.
Journal Article
Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis
by
Iwasawa, Shohei
,
Eguchi, Tadashi
,
Miyanaga, Akimasa
in
Acyl Carrier Protein - chemistry
,
Acyl Carrier Protein - metabolism
,
Acyltransferases - chemistry
2016
Acyltransferases (ATs) are key determinants of building block specificity in polyketide biosynthesis. Despite the importance of protein–protein interactions between AT and acyl carrier protein (ACP) during the acyltransfer reaction, the mechanism of ACP recognition by AT is not understood in detail. Herein, we report the crystal structure of AT VinK, which transfers a dipeptide group between two ACPs, VinL and VinP1LdACP, in vicenistatin biosynthesis. The isolated VinK structure showed a unique substrate-binding pocket for the dipeptide group linked to ACP. To gain greater insight into the mechanism of ACP recognition, we attempted to crystallize the VinK–ACP complexes. Because transient enzyme–ACP complexes are difficult to crystallize, we developed a covalent cross-linking strategy using a bifunctional maleimide reagent to trap the VinK–ACP complexes, allowing the determination of the crystal structure of the VinK–VinL complex. In the complex structure, Arg-153, Met-206, and Arg-299 of VinK interact with the negatively charged helix II region of VinL. The VinK–VinL complex structure allows, to our knowledge, the first visualization of the interaction between AT and ACP and provides detailed mechanistic insights into ACP recognition by AT.
Journal Article
Genome-wide identification of Kanamycin B binding RNA in Escherichia coli
by
Chang, Yaowen
,
Sun, Wenxia
,
Chen, Dongrong
in
Aminoglycoside antibiotics
,
Aminoglycosides
,
Aminoglycosides - chemistry
2023
Background
The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in
Escherichia coli
has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to
Escherichia coli
RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq).
Results
Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing.
Conclusions
The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in
Escherichia coli.
Journal Article
The context of the ribosome binding site in mRNAs defines specificity of action of kasugamycin, an inhibitor of translation initiation
by
Gross, Carol A.
,
Vázquez-Laslop, Nora
,
Aleksashin, Nikolay A.
in
Aminoglycoside antibiotics
,
Aminoglycosides
,
Aminoglycosides - chemistry
2022
Kasugamycin (KSG) is an aminoglycoside antibiotic widely used in agriculture and exhibits considerable medical potential. Previous studies suggested that KSG interferes with translation by blocking binding of canonical messenger RNA (mRNA) and initiator transfer tRNA (tRNA) to the small ribosomal subunit, thereby preventing initiation of protein synthesis. Here, by using genome-wide approaches, we show that KSG can interfere with translation even after the formation of the 70S initiation complex on mRNA, as the extent of KSG-mediated translation inhibition correlates with increased occupancy of start codons by 70S ribosomes. Even at saturating concentrations, KSG does not completely abolish translation, allowing for continuing expression of some Escherichia coli proteins. Differential action of KSG significantly depends on the nature of the mRNA residue immediately preceding the start codon, with guanine in this position being the most conducive to inhibition by the drug. In addition, the activity of KSG is attenuated by translational coupling as genes whose start codons overlap with the coding regions or the stop codons of the upstream cistrons tend to be less susceptible to drug-mediated inhibition. Altogether, our findings reveal KSG as an example of a small ribosomal subunit-targeting antibiotic with a well-pronounced context specificity of action.
Journal Article
Strain Prioritization and Genome Mining for Enediyne Natural Products
by
Crnovčić, Ivana
,
Zhao, Li-Xing
,
Huang, Yong
in
Actinobacteria - chemistry
,
Actinobacteria - genetics
,
Actinomycetes
2016
The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. IMPORTANCE Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family. Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family.
Journal Article
Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin
by
Dani, Rahul
,
Radhakrishnan, Logesh
,
Jamal, Shazia
in
Acetylation
,
Acetyltransferase
,
Amino acids
2024
Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family – GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug’s action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.
Journal Article
Determination of Aminoglycosides by Ion-Pair Liquid Chromatography with UV Detection: Application to Pharmaceutical Formulations and Human Serum Samples
by
García-Gómez, Diego
,
Ramírez Pérez, Irene
,
Herrero-Hernández, Eliseo
in
aminoglycosides
,
Aminoglycosides - analysis
,
Aminoglycosides - blood
2024
Aminoglycosides (AGs) represent a prominent class of antibiotics widely employed for the treatment of various bacterial infections. Their widespread use has led to the emergence of antibiotic-resistant strains of bacteria, highlighting the need for analytical methods that allow the simple and reliable determination of these drugs in pharmaceutical formulations and biological samples. In this study, a simple, robust and easy-to-use analytical method for the simultaneous determination of five common aminoglycosides was developed with the aim to be widely applicable in routine laboratories. With this purpose, different approaches based on liquid chromatography with direct UV spectrophotometric detection methods were investigated: on the one hand, the use of stationary phases based on hydrophilic interactions (HILIC); on the other hand, the use of reversed-phases in the presence of an ion-pairing reagent (IP-LC). The results obtained by HILIC did not allow for an effective separation of aminoglycosides suitable for subsequent spectrophotometric UV detection. However, the use of IP-LC with a C18 stationary phase and a mobile phase based on tetraborate buffer at pH 9.0 in the presence of octanesulfonate, as an ion-pair reagent, provided adequate separation for all five aminoglycosides while facilitating the use of UV spectrophotometric detection. The method thus developed, IP-LC-UV, was optimized and applied to the quality control of pharmaceutical formulations with two or more aminoglycosides. Furthermore, it is demonstrated here that this methodology is also suitable for more complex matrices, such as serum, which expands its field of application to therapeutic drug monitoring, which is crucial for aminoglycosides, with a therapeutic index ca. 50%.
Journal Article