Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,622
result(s) for
"Aminopeptidase"
Sort by:
Aminopeptidases in Cardiovascular and Renal Function. Role as Predictive Renal Injury Biomarkers
by
Wangesteen, Rosemary
,
Vargas, Félix
,
Rodríguez-Gómez, Isabel
in
Amino acids
,
Aminopeptidases - blood
,
Aminopeptidases - classification
2020
Aminopeptidases (APs) are metalloenzymes that hydrolyze peptides and polypeptides by scission of the N-terminus amino acid and that also participate in the intracellular final digestion of proteins. APs play an important role in protein maturation, signal transduction, and cell-cycle control, among other processes. These enzymes are especially relevant in the control of cardiovascular and renal functions. APs participate in the regulation of the systemic and local renin–angiotensin system and also modulate the activity of neuropeptides, kinins, immunomodulatory peptides, and cytokines, even contributing to cholesterol uptake and angiogenesis. This review focuses on the role of four key APs, aspartyl-, alanyl-, glutamyl-, and leucyl-cystinyl-aminopeptidases, in the control of blood pressure (BP) and renal function and on their association with different cardiovascular and renal diseases. In this context, the effects of AP inhibitors are analyzed as therapeutic tools for BP control and renal diseases. Their role as urinary biomarkers of renal injury is also explored. The enzymatic activities of urinary APs, which act as hydrolyzing peptides on the luminal surface of the renal tubule, have emerged as early predictive renal injury biomarkers in both acute and chronic renal nephropathies, including those induced by nephrotoxic agents, obesity, hypertension, or diabetes. Hence, the analysis of urinary AP appears to be a promising diagnostic and prognostic approach to renal disease in both research and clinical settings.
Journal Article
Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families
by
Schmitt, Marjorie
,
Ojeda del Sol, Daniel
,
Florent, Isabelle
in
Alzheimer's disease
,
Amino acids
,
Aminopeptidase
2023
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Journal Article
Positioning of aminopeptidase inhibitors in next generation cancer therapy
by
Ossenkoppele, Gert
,
Peters, Godefridus J
,
Verbrugge, Sue Ellen
in
Acute myeloid leukemia
,
Amino acids
,
Aminopeptidase
2014
Aminopeptidases represent a class of (zinc) metalloenzymes that catalyze the cleavage of amino acids nearby the N-terminus of polypeptides, resulting in hydrolysis of peptide bonds. Aminopeptidases operate downstream of the ubiquitin–proteasome pathway and are implicated in the final step of intracellular protein degradation either by trimming proteasome-generated peptides for antigen presentation or full hydrolysis into free amino acids for recycling in renewed protein synthesis. This review focuses on the function and subcellular location of five key aminopeptidases (aminopeptidase N, leucine aminopeptidase, puromycin-sensitive aminopeptidase, leukotriene A₄hydrolase and endoplasmic reticulum aminopeptidase 1/2) and their association with different diseases, in particular cancer and their current position as target for therapeutic intervention by aminopeptidase inhibitors. Historically, bestatin was the first prototypical aminopeptidase inhibitor that entered the clinic 35 years ago and is still used for the treatment of lung cancer. More recently, new generation aminopeptidase inhibitors became available, including the aminopeptidase inhibitor prodrug tosedostat, which is currently tested in phase II clinical trials for acute myeloid leukemia. Beyond bestatin and tosedostat, medicinal chemistry has emerged with additional series of potential aminopeptidases inhibitors which are still in an early phase of (pre)clinical investigations. The expanded knowledge of the unique mechanism of action of aminopeptidases has revived interest in aminopeptidase inhibitors for drug combination regimens in anti-cancer treatment. In this context, this review will discuss relevant features and mechanisms of action of aminopeptidases and will also elaborate on factors contributing to aminopeptidase inhibitor efficacy and/or loss of efficacy due to drug resistance-related phenomena. Together, a growing body of data point to aminopeptidase inhibitors as attractive tools for combination chemotherapy, hence their implementation may be a step forward in a new era of personalized treatment of cancer patients.
Journal Article
The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2, and LNPEP: From Evolution to Disease
by
Sorrentino, Rosa
,
Fiorillo, Maria Teresa
,
Paladini, Fabiana
in
Amino acids
,
aminopeptidases
,
Aminopeptidases - genetics
2020
In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin-angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as \"contributors\" to the shaping of the immune-peptidomes as well as to the regulation of the vascular response.
Journal Article
Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases
2020
Aminopeptidases (EC 3.4.11.) belongs to exoprotease family, which can catalyze the cleavage of peptide bond which connects the N-terminal amino acid to the penultimate residue in a protein. Aminopeptidases catalyze the process of removal of the N-terminal amino acids of target substrates by sequential cleavage of one amino acid residue at a time. Microbial aminopeptidase are of great acceptance as industrial enzymes with varying applications in food and pharma industry since these enzymes possess unique characteristics than aminopeptidases from other sources. This review describes the various applications of microbial aminopeptidases in different industrial sectors. These enzymes are widely used in food industry as a debittering agent as well as in the preparation of protein hydrolysates. In baking, brewing, and cheese making aminopeptidases are extensively used for removing the bitterness of peptides. The inhibitors of these enzymes are found great clinical applications against various diseases such as cancer, diabetes, and viral infections. Aminopeptidases are widely used for the synthesis of biopeptides and amino acids, and found to be efficient than chemical synthesis. These enzymes are capable of hydrolyzing organophosphate compounds, thus having biological as well as environmental significance.Key Points• Cleaves the amino-terminal amino acid residues from proteins and peptides.• Microbial aminopeptidase are of great acceptance as both therapeutic and industrial enzyme.• Review describes the potential applications of microbial aminopeptidases.
Journal Article
Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP)
2021
The
Plasmodium falciparum
M1 alanyl aminopeptidase and M17 leucyl aminopeptidase,
Pf
M1AAP and
Pf
M17LAP, are potential targets for novel anti-malarial drug development. Inhibitors of these aminopeptidases have been shown to kill malaria parasites in culture and reduce parasite growth in murine models. The two enzymes may function in the terminal stages of haemoglobin digestion, providing free amino acids for protein synthesis by the rapidly growing intra-erythrocytic parasites. Here we have performed a comparative cellular and biochemical characterisation of the two enzymes. Cell fractionation and immunolocalisation studies reveal that both enzymes are associated with the soluble cytosolic fraction of the parasite, with no evidence that they are present within other compartments, such as the digestive vacuole (DV). Enzyme kinetic studies show that the optimal pH of both enzymes is in the neutral range (pH 7.0–8.0), although
Pf
M1AAP also possesses some activity (< 20%) at the lower pH range of 5.0–5.5. The data supports the proposal that
Pf
M1AAP and
Pf
M17LAP function in the cytoplasm of the parasite, likely in the degradation of haemoglobin-derived peptides generated in the DV and transported to the cytosol.
Journal Article
Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer’s disease (AD) mouse model and is increased at early stage in sporadic AD brain
by
Valverde, Audrey
,
Chami Mounia
,
Dunys Julie
in
Alzheimer's disease
,
Aminopeptidase
,
Animal models
2021
One of the main components of senile plaques in Alzheimer’s disease (AD)-affected brain is the Aβ peptide species harboring a pyroglutamate at position three pE3-Aβ. Several studies indicated that pE3-Aβ is toxic, prone to aggregation and serves as a seed of Aβ aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aβ N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aβ and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aβ1-40 to yield Aβ2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aβ-precursor protein (βAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aβ- and Aβ1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aβ-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aβ N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.
Journal Article
Inhibition of IRAP Enhances the Expression of Pro-Cognitive Markers Drebrin and MAP2 in Rat Primary Neuronal Cells
by
Stam, Frida
,
Håkansson, Esther Olaniran
,
Grönbladh, Alfhild
in
Alzheimer's disease
,
Aminopeptidases
,
Animals
2024
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models. The macrocyclic compound 9 (C9) is a potent synthetic IRAP inhibitor developed from the previously reported inhibitor HA08. In this study, we have examined compound C9 and its effects on cognitive markers drebrin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP) in primary hippocampal and cortical cultures. Cells from Sprague Dawley rats were cultured for 14 days before treatment with C9 for 4 consecutive days. The cells were analysed for protein expression of drebrin, MAP2, GFAP, glucose transporter type 4 (GLUT4), vesicular glutamate transporter 1 (vGluT1), and synapsin I using immunocytochemistry. The gene expression of related proteins was determined using qPCR, and viability assays were performed to evaluate toxicity. The results showed that protein expression of drebrin and MAP2 was increased, and the corresponding mRNA levels were decreased after treatment with C9 in the hippocampal cultures. The ratio of MAP2-positive neurons and GFAP-positive astrocytes was altered and there were no toxic effects observed. In conclusion, the IRAP inhibitor compound C9 enhances the expression of the pro-cognitive markers drebrin and MAP2, which further confirms IRAP as a relevant pharmaceutical target and C9 as a promising candidate for further investigation.
Journal Article
Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure
by
Maruyama, Masato
,
Hattori, Akira
,
Tsujimoto, Masafumi
in
Aminopeptidases - chemistry
,
Aminopeptidases - metabolism
,
Blood Pressure - physiology
2008
It is becoming evident that several aminopeptidases belonging to the M1 family such as aminopeptidase A (APA), placental leucine aminopeptidase (P-LAP), and adipocyte-derived leucine aminopeptidase (A-LAP) play important roles in the regulation of blood pressure under both the physiological and pathological conditions. They share HEXXH(X)
18
E zinc-binding and GAMEN motifs essential for enzymatic activities. In this review, the current situation regarding the biochemical characteristics of these enzymes including enzymatic properties and modes of action is summarized.
Journal Article
Bioinformatic characterization of ENPEP, the gene encoding a potential cofactor for SARS-CoV-2 infection
2024
Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4). Recent studies have proposed a role for ENPEP as a viral receptor in humans, and ENPEP and ACE2 are both closely involved in the renin-angiotensin-aldosterone system proposed to play an important role in SARS-CoV-2 pathophysiology. We performed bioinformatic analyses using publicly available bulk (>17,000 samples from 49 distinct tissues) and single-cell (>2.5 million cells) RNA-Seq gene expression datasets to evaluate the expression and function of the ENPEP gene. We also investigated age- and sex-related changes in ENPEP expression. Overall, expression of ENPEP was highest in the small intestine enterocyte brush border and the kidney cortex. ENPEP is widely expressed in a subset of vascular smooth muscle cells (likely pericytes) in systemic vasculature, the heart, and the brain. ENPEP is expressed at low levels in the lower respiratory epithelium. In the lung, ENPEP is most highly expressed in para-alveolar fibroblasts. Single-cell data revealed ENPEP expression in a substantial fraction of ependymal cells, a finding not reported before in humans. Age increases ENPEP expression in skeletal muscle and the prostate, while decreasing it in the heart and aorta. Angiogenesis was found to be a central biological function associated with the ENPEP gene. Tissue-specific roles, such as protein digestion and fat metabolism, were also identified in the intestine. In the liver, the gene is linked to the complement system, a connection that has not yet been thoroughly investigated. Expression of ENPEP and ACE2 is strongly correlated in the small intestine and renal cortex. Both overall and in blood vessels, ENPEP and ACE2 have a stronger correlation than many other genes associated with SARS-CoV-2, such as TMPRSS2, CTSL, and NRP1. Possible interaction between glutamyl aminopeptidase and SARS-CoV-2 should be investigated experimentally.
Journal Article