Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,792 result(s) for "Amputee"
Sort by:
Quantification of push-off and collision work during step-to-step transition in amputees walking at self-selected speed: Effect of amputation level
Maintaining forward walking during human locomotion requires mechanical joint work, mainly provided by the ankle–foot in non-amputees. In lower-limb amputees, their metabolic overconsumption is generally attributed to reduced propulsion. However, it remains unclear how altered walking patterns resulting from amputation affect energy exchange. The purpose of this retrospective study was to investigate the impact of self-selected walking speed (SSWS) on mechanical works generated by the ankle–foot and by the entire lower limbs depending on the level of amputation. 155 participants, including 47 non-amputees (NAs), 40 unilateral transtibial amputees (TTs) and 68 unilateral transfemoral amputees (TFs), walked at their SSWS. Positive push-off work done by the trailing limb (WStS+) and its associated ankle–foot (Wankle-foot+), as well as negative collision work done by the leading limb (WStS-) were analysed during the transition from prosthetic limb to contralateral limb. An ANCOVA was performed to assess the effect of amputation level on mechanical works, while controlling for SSWS effect. After adjusting for SSWS, NAs produce more push-off work with both their biological ankle–foot and trailing limb than amputees do on prosthetic side. Using the same type of prosthetic feet, TTs and TFs can generate the same amount of prosthetic Wankle-foot+, while prosthetic WStS+ is significantly higher for TTs and remains constant with SSWS for TFs. Surprisingly and contrary to theoretical expectations, the lack of propulsion at TFs’ prosthetic limb did not affect their contralateral WStS-, for which a difference is significant only between NAs and TTs. Further studies should investigate the relationship between the TFs' inability to increase prosthetic limb push-off work and metabolic expenditure.
Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks
Many people struggle with mobility impairments due to lower limb amputations. To participate in society, they need to be able to walk on a wide variety of terrains, such as stairs, ramps, and level ground. Current lower limb powered prostheses require different control strategies for varying ambulation modes, and use data from mechanical sensors within the prosthesis to determine which ambulation mode the user is in. However, it can be challenging to distinguish between ambulation modes. Efforts have been made to improve classification accuracy by adding electromyography information, but this requires a large number of sensors, has a low signal-to-noise ratio, and cannot distinguish between superficial and deep muscle activations. An alternative sensing modality, A-mode ultrasound, can detect and distinguish between changes in superficial and deep muscles. It has also shown promising results in upper limb gesture classification. Despite these advantages, A-mode ultrasound has yet to be employed for lower limb activity classification. Here we show that A- mode ultrasound can classify ambulation mode with comparable, and in some cases, superior accuracy to mechanical sensing. In this study, seven transfemoral amputee subjects walked on an ambulation circuit while wearing A-mode ultrasound transducers, IMU sensors, and their passive prosthesis. The circuit consisted of sitting, standing, level-ground walking, ramp ascent, ramp descent, stair ascent, and stair descent, and a spatial-temporal convolutional network was trained to continuously classify these seven activities. Offline continuous classification with A-mode ultrasound alone was able to achieve an accuracy of 91.8±3.4%, compared with 93.8±3.0%, when using kinematic data alone. Combined kinematic and ultrasound produced 95.8±2.3% accuracy. This suggests that A-mode ultrasound provides additional useful information about the user's gait beyond what is provided by mechanical sensors, and that it may be able to improve ambulation mode classification. By incorporating these sensors into powered prostheses, users may enjoy higher reliability for their prostheses, and more seamless transitions between ambulation modes.
Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation
Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75–1.75 m s−1 and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.
Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves
Despite advances in sophisticated robotic hands, intuitive control of and sensory feedback from these prostheses has been limited to only 3-degrees-of-freedom (DOF) with 2 sensory percepts in closed-loop control. A Utah Slanted Electrode Array (USEA) has been used in the past to provide up to 81 sensory percepts for human amputees. Here, we report on the advanced capabilities of multiple USEAs implanted in the residual peripheral arm nerves of human amputees for restoring control of 5 DOF and sensation of up to 131 proprioceptive and cutaneous hand sensory percepts. We also demonstrate that USEA-restored sensory percepts provide a useful source of feedback during closed-loop virtual prosthetic hand control. Two 100-channel USEAs were implanted for 4-5 weeks, one each in the median and ulnar arm nerves of two human subjects with prior long-duration upper-arm amputations. Intended finger and wrist positions were decoded from neuronal firing patterns via a modified Kalman filter, allowing subjects to control many movements of a virtual prosthetic hand. Additionally, USEA microstimulation was used to evoke numerous sensory percepts spanning the phantom hand. Closed-loop control was achieved by stimulating via an electrode of the ulnar-nerve USEA while recording and decoding movement via the median-nerve USEA. Subjects controlled up to 12 degrees-of-freedom during informal, 'freeform' online movement decode sessions, and experienced up to 131 USEA-evoked proprioceptive and cutaneous sensations spanning the phantom hand. Independent control was achieved for a 5-DOF real-time decode that included flexion/extension of the thumb, index, middle, and ring fingers, and the wrist. Proportional control was achieved for a 4-DOF real-time decode. One subject used a USEA-evoked hand sensation as feedback to complete a 1-DOF closed-loop virtual-hand movement task. There were no observed long-term functional deficits due to the USEA implants. Implantation of high-channel-count USEAs enables multi-degree-of-freedom control of virtual prosthetic hand movement and restoration of a rich selection of both proprioceptive and cutaneous sensory percepts spanning the hand during the short 4-5 week post-implant period. Future USEA use in longer-term implants and in closed-loop may enable restoration of many of the capabilities of an intact hand while contributing to a meaningful embodiment of the prosthesis.
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees
Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
An Affordable Insole-Sensor-Based Trans-Femoral Prosthesis for Normal Gait
This paper proposes a novel and an affordable lower limb prosthesis to enable normal gait kinematics for trans-femoral amputees. The paper details the design of a passive prosthesis with magneto-rheological (MR) damping system and electronic control. A new control approach based on plantar insole feedback was employed here. Strategically placed sensors on the plantar insole provide required information about gait cycle to a finite state controller for suitable action. A proportional integral (PI) based current controller controls the required current for necessary damping during gait. The prosthesis was designed and developed locally in India keeping in view the cost, functionality, socio-economic, and aesthetic requirements. The prototype was experimentally tested on a trans-femoral amputee and the results are presented in this work. The implementation of the proposed design and control scheme in the prototype successfully realizes the notion that normal gait kinematics can be achieved at a low cost comparable to passive prostheses. The incurring cost and power expenditure of the proposed prosthesis are evaluated against passive and active prostheses, respectively. The commercial implications for the prosthesis were explored on the basis of recommendations of ISPO Consensus Conference on Appropriate Prosthetic Technology in Developing Countries. The key objective of this work is to enable lucid design for development of an affordable prosthesis in a low-resource setting.
Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain
Conventional leg prostheses do not convey sensory information about motion or interaction with the ground to above-knee amputees, thereby reducing confidence and walking speed in the users that is associated with high mental and physical fatigue . The lack of physiological feedback from the remaining extremity to the brain also contributes to the generation of phantom limb pain from the missing leg . To determine whether neural sensory feedback restoration addresses these issues, we conducted a study with two transfemoral amputees, implanted with four intraneural stimulation electrodes in the remaining tibial nerve (ClinicalTrials.gov identifier NCT03350061). Participants were evaluated while using a neuroprosthetic device consisting of a prosthetic leg equipped with foot and knee sensors. These sensors drive neural stimulation, which elicits sensations of knee motion and the sole of the foot touching the ground. We found that walking speed and self-reported confidence increased while mental and physical fatigue decreased for both participants during neural sensory feedback compared to the no stimulation trials. Furthermore, participants exhibited reduced phantom limb pain with neural sensory feedback. The results from these proof-of-concept cases provide the rationale for larger population studies investigating the clinical utility of neuroprostheses that restore sensory feedback.
The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis
To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop control does not improve the performance, it could be beneficial as it seems to improve the subjective experience. Therefore, in this study we demonstrate, for the first time, the relevance of an advanced, multi-variable feedback interface for dexterous, multi-functional prosthesis control in a clinically relevant setting.
Leg stiffness in unilateral transfemoral amputees across a range of running speeds
Carbon fiber running-specific prostheses have allowed lower extremity amputees to participate in running activity by providing spring-like properties in their affected limb. It has been established that as running speed increases, stiffness of the leg spring (leg stiffness; kleg) remains constant in non-amputees. Although a better understanding of kleg regulation may be helpful for the development of spring-based prostheses, little is known about stiffness regulation in unilateral transfemoral amputees. The aim of this study was to investigate stiffness regulation at different running speeds in unilateral transfemoral amputees wearing a running-specific prosthesis. Nine unilateral transfemoral amputees performed running on an instrumented treadmill across a range of speeds (30, 40, 50, 60, and 70% of their maximum running speed). Using a spring-mass model, kleg was calculated as the ratio of maximal vertical ground reaction force to maximum leg compression during the stance phase in both affected and unaffected limbs. We found a decrease in kleg from the slower speed to 70% speed for the affected limb, whereas no change was present in the unaffected limb. Specifically, there was a significant differences in the kleg between 30% and 70%, 40% and 70%, and 50% and 70%, and the magnitude of the kleg difference between affected and unaffected limbs varied with variations in running speeds in unilateral TFAs with an RSP. These results suggest the kleg regulation strategy of unilateral transfemoral amputees is not the same in the affected and unaffected limbs across a range of running speeds.
A Pneumatically Controlled Prosthetic Socket for Transfemoral Amputees
Amputees typically experience changes in residual limb volume in their daily lives. It causes an uncomfortable fit of the socket by applying high pressure on the sensitive area of the residual limb or by loosening the socket. In this study, we developed a transfemoral prosthetic socket for above-the-knee amputees that ensures a good socket fit by maintaining uniform and constant contact pressure despite volume changes in the residual limb. The socket has two air bladders in the posterior femoral region, and the pneumatic controller is located on the tibia of the prosthesis. The pneumatic system aims to minimize unstable fitting of the socket and improve walking performance by inflating or deflating the air bladder. The developed socket autonomously maintains the air pressure inside the prosthetic socket at a steady-state error of 3 mmHg or less by adjusting the amount of air in the air bladder via closed-loop control. In the clinical trial, amputee participants walked on flat and inclined surfaces. The displacement between the residual limb and socket during the gait cycle was reduced by up to 33.4% after air injection into the socket. The inflatable bladder increased the knee flexion angle on the affected side, resulting in increased stride length and gait velocity. The pneumatic socket provides a stable and comfortable walking experience not only when walking on flat ground but also on slopes.