Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,365
result(s) for
"Anaerobic environments"
Sort by:
Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization
by
Tfaily, Malak M.
,
Neumann, Rebecca B.
,
Pracht, Lara E.
in
Alkanes
,
Anaerobic conditions
,
Anaerobic environments
2018
Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of degrading compounds with a low NOSC. While all compound types were eventually degraded during incubation, NOSC and compound size controlled the rates of carbon transformation. Large, more thermodynamically favorable compounds (e.g., aromatics with a high NOSC) were targeted first, while small, less thermodynamically favorable compounds (e.g., alkanes and olefinics with a low NOSC) were used last. These results indicate that in anaerobic conditions, microbial communities are capable of degrading and mineralizing all forms of organic matter, converting larger energy-rich compounds into smaller energy-poor compounds. However, in an open system, where fresh carbon is continually supplied, the slower degradation rate of reduced carbon compounds would enable this portion of the organic carbon pool to build up, explaining the apparent persistence of compounds with a low NOSC in anaerobic environments.
Journal Article
Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria
by
Weissenbach, Julia
,
Wein, Tanita
,
Romero, Dennis
in
Anaerobic environments
,
Aquatic environment
,
Bacteria
2022
Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
Journal Article
Microaerobic biodegradation of aromatic hydrocarbon mixtures: strategies for efficient nitrate and oxygen dosage
by
Grotenhuis, Tim
,
Aldas-Vargas, Andrea
,
Aydin, Dilan Camille
in
Aerobic conditions
,
Aerobiosis
,
Anaerobic conditions
2025
The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present. An innovative strategy of alternating nitrate-reducing and microaerobic conditions to stimulate biodegradation is proposed, utilizing nitrate initially to degrade easily-degradable compounds, and potentially reducing the need for additional oxygen. Batch experiments were conducted to assess the biodegradation of a BTEX, indene, indane, and naphthalene mixture using groundwater and sediments from an anaerobic contaminated aquifer. Two set-ups were incubated for 98 days to assess the redox transitions between microaerobic (oxygen concentrations < 0.5 mg O
2
L
−1
) and nitrate-reducing conditions, aiming to minimize external electron acceptor usage while maximizing degradation. Comparative experiments under fully aerobic and fully anaerobic (nitrate-reducing) conditions were conducted, revealing that under microaerobic conditions, all compounds were completely degraded, achieving removal efficiencies comparable to fully aerobic conditions. A pre-treatment phase involving nitrate-reducing conditions followed by microaerobic conditions showed more effective utilization of oxygen specifically for contaminant degradation compared to fully aerobic conditions. Contrarily, under fully anaerobic conditions, without oxygen addition, partial degradation of ethylbenzene was observed after 400 days, while other compounds remained. The outcomes of this study can provide valuable insights for refining strategies involving oxygen and nitrate dosages, thereby enhancing the efficacy of in situ bioremediation approaches targeting complex hydrocarbon mixtures within anaerobic subsurface environments.
Key points
• BTEX, indene, indane, and naphthalene mix biodegraded under microaerobic conditions
• Subsurface microorganisms swiftly adapt from nitrate to microaerobic conditions
• More oxygen directed to hydrocarbon biodegradation via a pre-anaerobic treatment
Journal Article
The Archaellum of Methanospirillum hungatei Is Electrically Conductive
by
Nonnenmann, Stephen S.
,
Zhou, Zimu
,
Lovley, Derek R.
in
Amino acids
,
Anaerobic environments
,
Anaerobic microorganisms
2019
Microbially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the known M. hungatei archaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum of M. hungatei is electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment. Microbially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum of Methanospirillum hungatei is electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved in Archaea . Furthermore, the structure of the M. hungatei archaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222 ). Thus, the archaellum of M. hungatei is the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of the M. hungatei archaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of “green” electronic materials that can be microbially produced with renewable feedstocks. IMPORTANCE Microbially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the known M. hungatei archaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum of M. hungatei is electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.
Journal Article
Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia
2022
Anaerobic microorganisms are thought to play a critical role in regulating the flux of short-chain gaseous alkanes (SCGAs; including ethane, propane and butane) from terrestrial and aquatic ecosystems to the atmosphere. Sulfate has been confirmed to act as electron acceptor supporting microbial anaerobic oxidation of SCGAs, yet several other energetically more favourable acceptors co-exist with these gases in anaerobic environments. Here, we show that a bioreactor seeded with biomass from a wastewater treatment facility can perform anaerobic propane oxidation coupled to nitrate reduction to dinitrogen gas and ammonium. The bioreactor was operated for more than 1000 days, and we used
13
C- and
15
N-labelling experiments, metagenomic, metatranscriptomic, metaproteomic and metabolite analyses to characterize the microbial community and the metabolic processes. The data collectively suggest that a species representing a novel order within the bacterial class Symbiobacteriia is responsible for the observed nitrate-dependent propane oxidation. The closed genome of this organism, which we designate as ‘
Candidatus
Alkanivorans nitratireducens’, encodes pathways for oxidation of propane to CO
2
via fumarate addition, and for nitrate reduction, with all the key genes expressed during nitrate-dependent propane oxidation. Our results suggest that nitrate is a relevant electron sink for SCGA oxidation in anaerobic environments, constituting a new microbially-mediated link between the carbon and nitrogen cycles.
Anaerobic microorganisms can oxidize short-chain gaseous alkanes such as ethane, propane and butane using sulfate as electron acceptor. Here, the authors show that a bioreactor enrichment of a wastewater microbial community can perform anaerobic propane oxidation coupled to nitrate reduction.
Journal Article
Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation
by
Moreno-Vivián, Conrado
,
Cabello, Purificación
,
Roldán, María Dolores
in
Anaerobic environments
,
Anaerobic microorganisms
,
Anaerobic treatment
2018
Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds, like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds. This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential application in bioremediation of industrial cyanide-containing wastes.
Journal Article
Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option
2020
Syntrophic interspecies electron exchange is essential for the stable functioning of diverse anaerobic microbial communities. Hydrogen/formate interspecies electron transfer (HFIT), in which H
2
and/or formate function as diffusible electron carriers, has been considered to be the primary mechanism for electron transfer because most common syntrophs were thought to lack biochemical components, such as electrically conductive pili (e-pili), necessary for direct interspecies electron transfer (DIET). Here we report that
Syntrophus aciditrophicus
, one of the most intensively studied microbial models for HFIT, produces e-pili and can grow via DIET. Heterologous expression of the putative
S. aciditrophicus
type IV pilin gene in
Geobacter sulfurreducens
yielded conductive pili of the same diameter (4 nm) and conductance of the native
S. aciditrophicus
pili and enabled long-range electron transport in
G. sulfurreducens
.
S. aciditrophicus
lacked abundant
c
-type cytochromes often associated with DIET. Pilin genes likely to yield e-pili were found in other genera of hydrogen/formate-producing syntrophs. The finding that DIET is a likely option for diverse syntrophs that are abundant in many anaerobic environments necessitates a reexamination of the paradigm that HFIT is the predominant mechanism for syntrophic electron exchange within anaerobic microbial communities of biogeochemical and practical significance.
Journal Article
Anaerobic oxidation of ammonium and short-chain gaseous alkanes coupled to nitrate reduction by a bacterial consortium
by
Engelberts, J Pamela
,
McIlroy, Simon J
,
Liu, Xiawei
in
Accumulation
,
Alkanes
,
Alkanes - metabolism
2024
The bacterial species “Candidatus Alkanivorans nitratireducens” was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) in response to nitrite accumulation. The regulation of this switch or the nature of potential syntrophic partnerships with other microorganisms remains unclear. Here, we describe anaerobic multispecies cultures of bacteria that couple the oxidation of propane and butane to nitrate reduction and the oxidation of ammonium (anammox). Batch tests with 15N-isotope labelling and multi-omic analyses collectively supported a syntrophic partnership between “Ca. A. nitratireducens” and anammox bacteria, with the former species mediating nitrate-driven oxidation of SCGAs, supplying the latter with nitrite for the oxidation of ammonium. The elimination of nitrite accumulation by the anammox substantially increased SCGA and nitrate consumption rates, whereas it suppressed DNRA. Removing ammonium supply led to its eventual production, the accumulation of nitrite, and the upregulation of DNRA gene expression for the abundant “Ca. A. nitratireducens”. Increasing the supply of SCGA had a similar effect in promoting DNRA. Our results suggest that “Ca. A. nitratireducens” switches to DNRA to alleviate oxidative stress caused by nitrite accumulation, giving further insight into adaptability and ecology of this microorganism. Our findings also have important implications for the understanding of the fate of nitrogen and SCGAs in anaerobic environments.
Journal Article
Anammox bacteria drive fixed nitrogen loss in hadal trench sediments
by
Thamdrup, Bo
,
Trouche, Blandine
,
Schauberger, Clemens
in
Abyssal zone
,
Ammonia-oxidizing bacteria
,
Anaerobic Ammonia Oxidation - physiology
2021
Benthic N₂ production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N₂ production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N₂ production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N₂ production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.
Journal Article
Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life
by
Ettema, Thijs J. G.
,
Spang, Anja
,
Caceres, Eva F.
in
Aerobes
,
Anaerobes
,
Anaerobic environments
2017
Archaea are prokaryotes that make up a third branch of the tree of life. Knowledge of archaeal biological diversity and their role in evolution has rapidly expanded in the past decade. Despite the discovery of previously unknown groups and lineages, few lineages have been well studied. Spang et al. review the diversity of Archaea and their genomes, metabolomes, and history, which clarifies the biology and placement of recently discovered archaeal lineages. Science , this issue p. eaaf3883 About 40 years ago, Archaea were recognized as a major prokaryotic domain of life besides Bacteria. Recently, cultivation-independent sequencing methods have produced a wealth of genomic data for previously unidentified archaeal lineages, several of which appear to represent newly revealed branches in the tree of life. Analyses of some recently obtained genomes have uncovered previously unknown metabolic traits and provided insights into the evolution of archaea and their relationship to eukaryotes. On the basis of our current understanding, much archaeal diversity still defies genomic exploration. Efforts to obtain and study genomes and enrichment cultures of uncultivated microbial lineages will likely further expand our knowledge about archaeal phylogenetic and metabolic diversity and their cell biology and ecological function.
Journal Article