Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
488 result(s) for "Anemia, Sickle Cell - physiopathology"
Sort by:
Intravascular hemolysis and the pathophysiology of sickle cell disease
Hemolysis is a fundamental feature of sickle cell anemia that contributes to its pathophysiology and phenotypic variability. Decompartmentalized hemoglobin, arginase 1, asymmetric dimethylarginine, and adenine nucleotides are all products of hemolysis that promote vasomotor dysfunction, proliferative vasculopathy, and a multitude of clinical complications of pulmonary and systemic vasculopathy, including pulmonary hypertension, leg ulcers, priapism, chronic kidney disease, and large-artery ischemic stroke. Nitric oxide (NO) is inactivated by cell-free hemoglobin in a dioxygenation reaction that also oxidizes hemoglobin to methemoglobin, a non-oxygen-binding form of hemoglobin that readily loses heme. Circulating hemoglobin and heme represent erythrocytic danger-associated molecular pattern (eDAMP) molecules, which activate the innate immune system and endothelium to an inflammatory, proadhesive state that promotes sickle vaso-occlusion and acute lung injury in murine models of sickle cell disease. Intravascular hemolysis can impair NO bioavailability and cause oxidative stress, altering redox balance and amplifying physiological processes that govern blood flow, hemostasis, inflammation, and angiogenesis. These pathological responses promote regional vasoconstriction and subsequent blood vessel remodeling. Thus, intravascular hemolysis represents an intrinsic mechanism for human vascular disease that manifests clinical complications in sickle cell disease and other chronic hereditary or acquired hemolytic anemias.
Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG)
Sickle-cell anaemia is associated with substantial morbidity from acute complications and organ dysfunction beginning in the first year of life. Hydroxycarbamide substantially reduces episodes of pain and acute chest syndrome, admissions to hospital, and transfusions in adults with sickle-cell anaemia. We assessed the effect of hydroxycarbamide therapy on organ dysfunction and clinical complications, and examined laboratory findings and toxic effects. This randomised trial was undertaken in 13 centres in the USA between October, 2003, and September, 2009. Eligible participants had haemoglobin SS (HbSS) or haemoglobin Sβ 0thalassaemia, were aged 9–18 months at randomisation, and were not selected for clinical severity. Participants received liquid hydroxycarbamide, 20 mg/kg per day, or placebo for 2 years. Randomisation assignments were generated by the medical coordinating centre by a pre-decided schedule. Identical appearing and tasting formulations were used for hydroxycarbamide and placebo. Patients, caregivers, and coordinating centre staff were masked to treatment allocation. Primary study endpoints were splenic function (qualitative uptake on 99Tc spleen scan) and renal function (glomerular filtration rate by 99mTc-DTPA clearance). Additional assessments included blood counts, fetal haemoglobin concentration, chemistry profiles, spleen function biomarkers, urine osmolality, neurodevelopment, transcranial Doppler ultrasonography, growth, and mutagenicity. Study visits occurred every 2–4 weeks. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00006400. 96 patients received hydroxycarbamide and 97 placebo, of whom 83 patients in the hydroxycarbamide group and 84 in the placebo group completed the study. Significant differences were not seen between groups for the primary endpoints (19 of 70 patients with decreased spleen function at exit in the hydroxycarbamide group vs 28 of 74 patients in the placebo group, p=0·21; and a difference in the mean increase in DTPA glomerular filtration rate in the hydroxycarbamide group versus the placebo group of 2 mL/min per 1·73 m 2, p=0·84). Hydroxycarbamide significantly decreased pain (177 events in 62 patients vs 375 events in 75 patients in the placebo group, p=0·002) and dactylitis (24 events in 14 patients vs 123 events in 42 patients in the placebo group, p<0·0001), with some evidence for decreased acute chest syndrome, hospitalisation rates, and transfusion. Hydroxyurea increased haemoglobin and fetal haemoglobin, and decreased white blood-cell count. Toxicity was limited to mild-to-moderate neutropenia. On the basis of the safety and efficacy data from this trial, hydroxycarbamide can now be considered for all very young children with sickle-cell anaemia. The US National Heart, Lung, and Blood Institute; and the National Institute of Child Health and Human Development.
The multifaceted role of ischemia/reperfusion in sickle cell anemia
Sickle cell anemia is a unique disease dominated by hemolytic anemia and vaso-occlusive events. The latter trigger a version of ischemia/reperfusion (I/R) pathobiology that is singular in its origin, cyclicity, complexity, instability, perpetuity, and breadth of clinical consequences. Specific clinical features are probably attributable to local I/R injury (e.g., stroke syndromes) or remote organ injury (e.g., acute chest syndrome) or the systematization of inflammation (e.g., multifocal arteriopathy). Indeed, by fashioning an underlying template of endothelial dysfunction and vulnerability, the robust inflammatory systematization no doubt contributes to all sickle pathology. In this Review, we highlight I/R-targeting therapeutics shown to improve microvascular blood flow in sickle transgenic mice undergoing I/R, and we suggest how such insights might be translated into human therapeutic strategies.
Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial
For children with sickle cell anaemia and high transcranial doppler (TCD) flow velocities, regular blood transfusions can effectively prevent primary stroke, but must be continued indefinitely. The efficacy of hydroxycarbamide (hydroxyurea) in this setting is unknown; we performed the TWiTCH trial to compare hydroxyurea with standard transfusions. TWiTCH was a multicentre, phase 3, randomised, open-label, non-inferiority trial done at 26 paediatric hospitals and health centres in the USA and Canada. We enrolled children with sickle cell anaemia who were aged 4–16 years and had abnormal TCD flow velocities (≥200 cm/s) but no severe vasculopathy. After screening, eligible participants were randomly assigned 1:1 to continue standard transfusions (standard group) or hydroxycarbamide (alternative group). Randomisation was done at a central site, stratified by site with a block size of four, and an adaptive randomisation scheme was used to balance the covariates of baseline age and TCD velocity. The study was open-label, but TCD examinations were read centrally by observers masked to treatment assignment and previous TCD results. Participants assigned to standard treatment continued to receive monthly transfusions to maintain 30% sickle haemoglobin or lower, while those assigned to the alternative treatment started oral hydroxycarbamide at 20 mg/kg per day, which was escalated to each participant's maximum tolerated dose. The treatment period lasted 24 months from randomisation. The primary study endpoint was the 24 month TCD velocity calculated from a general linear mixed model, with the non-inferiority margin set at 15 cm/s. The primary analysis was done in the intention-to-treat population and safety was assessed in all patients who received at least one dose of assigned treatment. This study is registered with ClinicalTrials.gov, number NCT01425307. Between Sept 20, 2011, and April 17, 2013, 159 patients consented and enrolled in TWiTCH. 121 participants passed screening and were then randomly assigned to treatment (61 to transfusions and 60 to hydroxycarbamide). At the first scheduled interim analysis, non-inferiority was shown and the sponsor terminated the study. Final model-based TCD velocities were 143 cm/s (95% CI 140–146) in children who received standard transfusions and 138 cm/s (135–142) in those who received hydroxycarbamide, with a difference of 4·54 (0·10–8·98). Non-inferiority (p=8·82 × 10−16) and post-hoc superiority (p=0·023) were met. Of 29 new neurological events adjudicated centrally by masked reviewers, no strokes were identified, but three transient ischaemic attacks occurred in each group. Magnetic resonance brain imaging and angiography (MRI and MRA) at exit showed no new cerebral infarcts in either treatment group, but worsened vasculopathy in one participant who received standard transfusions. 23 severe adverse events in nine (15%) patients were reported for hydroxycarbamide and ten serious adverse events in six (10%) patients were reported for standard transfusions. The most common serious adverse event in both groups was vaso-occlusive pain (11 events in five [8%] patients with hydroxycarbamide and three events in one [2%] patient for transfusions). For high-risk children with sickle cell anaemia and abnormal TCD velocities who have received at least 1 year of transfusions, and have no MRA-defined severe vasculopathy, hydroxycarbamide treatment can substitute for chronic transfusions to maintain TCD velocities and help to prevent primary stroke. National Heart, Lung, and Blood Institute, National Institutes of Health.
Therapeutic strategies for sickle cell disease: towards a multi-agent approach
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD — hydroxyurea and l-glutamine — are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia–reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology
In hematologic diseases, such as sickle cell disease (SCD) and hemolytic uremic syndrome (HUS), pathological biophysical interactions among blood cells, endothelial cells, and soluble factors lead to microvascular occlusion and thrombosis. Here, we report an in vitro \"endothelialized\" microfluidic microvasculature model that recapitulates and integrates this ensemble of pathophysiological processes. Under controlled flow conditions, the model enabled quantitative investigation of how biophysical alterations in hematologic disease collectively lead to microvascular occlusion and thrombosis. Using blood samples from patients with SCD, we investigated how the drug hydroxyurea quantitatively affects microvascular obstruction in SCD, an unresolved issue pivotal to understanding its clinical efficacy in such patients. In addition, we demonstrated that our microsystem can function as an in vitro model of HUS and showed that shear stress influences microvascular thrombosis/obstruction and the efficacy of the drug eptifibatide, which decreases platelet aggregation, in the context of HUS. These experiments establish the versatility and clinical relevance of our microvasculature-on-a-chip model as a biophysical assay of hematologic pathophysiology as well as a drug discovery platform.
Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin
It has recently been demonstrated that mouse and human fibroblasts can be reprogrammed into an embryonic stem cell-like state by introducing combinations of four transcription factors. However, the therapeutic potential of such induced pluripotent stem (iPS) cells remained undefined. By using a humanized sickle cell anemia mouse model, we show that mice can be rescued after transplantation with hematopoietic progenitors obtained in vitro from autologous iPS cells. This was achieved after correction of the human sickle hemoglobin allele by gene-specific targeting. Our results provide proof of principle for using transcription factor-induced reprogramming combined with gene and cell therapy for disease treatment in mice. The problems associated with using retroviruses and oncogenes for reprogramming need to be resolved before iPS cells can be considered for human therapy.
Alendronate preserves bone mineral density in adults with sickle cell disease and osteoporosis
SummaryLow bone mineral density is highly prevalent in sickle cell disease (SCD); whether bisphosphonates can safely preserve or increase bone mass in SCD adults remains unknown. In this study, lumbar spine bone density remained stable with alendronate use, and treatment-related side effects were mostly mild and self-limited.PurposeTo describe the effects of alendronate in adults with sickle cell disease (SCD) and osteoporosis.MethodsWe reviewed retrospective clinical data from adults with SCD and osteoporosis treated with alendronate at a single center in Brazil (2009–2019). Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) of the lumbar spine, femoral neck, and total hip. We analyzed BMD changes by alendronate treatment duration (months), stratified by sex, skeletal site, and SCD genotype.ResultsSixty-four SCD adults with osteoporosis (69% females, 73% HbSS, mean age ± standard deviation 42.4 ± 10.9 years) received alendronate for a median (interquartile range) of 48 (29, 73) months. Compared with males, females had significantly lower baseline BMD (g/cm2) at the femoral neck (0.72 vs 0.85, p =  < 0.001) and total hip (0.79 vs 0.88, p = 0.009). The between-sex differences in BMD changes were insignificant. Mean lumbar spine BMD significantly changed by 0.0357 g/cm2 (p = 0.028) in those on alendronate for > 5 years. Four adults (6.3%) reported mild therapy-related side effects. An atypical femoral diaphysis fracture, attributed to alendronate, was incidentally noted in a 37-year-old man on treatment for 4 years.ConclusionIn this retrospective cohort of adults with SCD and osteoporosis on alendronate for a median of 48 months, we found no significant interactions between sex and changes in lumbar spine, femoral neck, or total hip BMD with alendronate. Lumbar spine BMD was stable in those on alendronate for < 5 years. Side effects of alendronate were mild, though one patient developed an atypical femoral fracture.
Doctors cured her sickle-cell disease. So why is she still in pain?
Gene and cell therapies bring fresh hope to people with genetic disorders, but recovery can be complex and long-term support remains sparse. Gene and cell therapies bring fresh hope to people with genetic disorders, but recovery can be complex and long-term support remains sparse. A portrait of Genesis Jones sitting on her sofa in her home
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis
Significance A major challenge with in vitro investigations of the pathophysiological processes in sickle cell disease (SCD) has been the lack of a well-controlled microenvironment to mimic in vivo circulating conditions. The microfluidic platform developed here provides a quantitative assay of the kinetics of cell sickling, unsickling, and single-cell rheology. The ensuing alterations in the biorheological characteristics of sickle cells under hypoxic conditions show strong correlation with sickle hemoglobin level, hydroxyurea (HU) therapy, and cell density. These analyses provide cell-level perspectives of the clinical manifestations in SCD patients and offer unique diagnostic indicators of vasoocclusion and disease severity. These results could also provide alternative pathways to supplement current clinical practices to evaluate HU therapy. We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.