Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
69,070 result(s) for "Animal Diseases - prevention "
Sort by:
Parallel multi-criteria decision analysis for sub-national prioritization of zoonoses and animal diseases in Africa: The case of Cameroon
The use of multi-criteria decision analysis (MCDA) for disease prioritization at the sub-national level in sub-Sahara Africa (SSA) is rare. In this research, we contextualized MCDA for parallel prioritization of endemic zoonoses and animal diseases in The Adamawa and North regions of Cameroon. MCDA was associated to categorical principal component analysis (CATPCA), and two-step cluster analysis. Six and seven domains made of 17 and 19 criteria (out of 70) respectively were selected by CATPCA for the prioritization of zoonoses and animal diseases, respectively. The most influencing domains were “public health” for zoonoses and “control and prevention” for animal diseases. Twenty-seven zoonoses and 40 animal diseases were ranked and grouped in three clusters. Sensitivity analysis resulted in high correlation between complete models and reduced models showing the robustness of the simplification processes. The tool used in this study can be applied to prioritize endemic zoonoses and transboundary animal diseases in SSA at the sub-national level and upscaled at the national and regional levels. The relevance of MCDA is high because of its contextualization process and participatory nature enabling better operationalization of disease prioritization outcomes in the context of African countries or other low and middle-income countries.
The role of plant secondary metabolites in mammalian herbivory: ecological perspectives
Plant secondary metabolites (PSM) have many ecological functions, but have long been considered as defences against pathogens or herbivores (vertebrate or invertebrate), reducing the likelihood and extent of attack. However, mammalian herbivores ingest many foods containing PSM and use both behavioural methods and physiological strategies to limit their negative effects. Most physiological counter-adaptations are inducible in response to ingested PSM, providing efficient protection against toxic effects. Possible positive effects of PSM include antioxidant and anthelminthic properties and complex formation between protein and condensed tannins that protects dietary protein from degradation by the symbiotic microflora of foregut fermenters, increasing its utilisation by the animal. This protein effect is probably only beneficial to animals under a narrow range of nutrient-rich conditions found mainly in agricultural systems. There are many examples of PSM causing food avoidance or reducing food intake, but there is as yet relatively little evidence for positive selection of them by herbivores. Although the feedback mechanisms relating the post-ingestive consequences of PSM to subsequent foraging behaviour are beginning to be understood, knowledge of the integration of behavioural and physiological strategies for regulating the effects of PSM is relatively poor. The opportunities for learned avoidance of PSM may be restricted in animals with complex diets that cannot associate a particular feedback signal with a given food type. A greater emphasis on the study of subclinical effects of PSM rather than acute effects, on pharmaco-kinetic studies in relation to behavioural studies and on the use of realistic experimental models is advocated.
Handbook of equine parasite control
Handbook of Equine Parasite Control, Second Edition offers a thorough revision to this practical manual of parasitology in the horse. Incorporating new information and diagnostic knowledge throughout, it adds five new sections, new information on computer simulation methods, and new maps to show the spread of anthelmintic resistance. The book also features 30 new high-quality figures and expanded information on parasite occurrence and epidemiology, new diagnostics, treatment strategies, clinical significance of infections, anthelmintic resistance, and environmental persistence. This second edition of Handbook of Equine Parasite Control brings together all the details needed to appropriately manage parasites in equine patients and support discussions between horse owners and their veterinarians. It offers comprehensive coverage of internal parasites and factors affecting their transmission; principles of equine parasite control; and diagnosis and assessment of parasitologic information. Additionally, the book provides numerous new case histories, covering egg count results from yearlings, peritonitis and parasites, confinement and deworming, quarantine advice, abdominal distress in a foal, and more. * A clear and concise user-friendly guide to equine parasite control for veterinary practitioners and students * Fully updated with new knowledge and diagnostic methods throughout * Features brand new case studies * Presents 30 new high-quality figures, including new life-cycle charts * Provides maps to show the spread of anthelmintic resistance Handbook of Equine Parasite Control is an essential guide for equine practitioners, veterinary students, and veterinary technicians dealing with parasites in the horse.
A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.
Global change, parasite transmission and disease control: lessons from ecology
Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’.
Tackling emerging fungal threats to animal health, food security and ecosystem resilience
Emerging infections caused by fungi have become a widely recognized global phenomenon. Their notoriety stems from their causing plagues and famines, driving species extinctions, and the difficulty in treating human mycoses alongside the increase of their resistance to antifungal drugs. This special issue comprises a collection of articles resulting from a Royal Society discussion meeting examining why pathogenic fungi are causing more disease now than they did in the past, and how we can tackle this rapidly emerging threat to the health of plants and animals worldwide. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.
Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants
The 1918 influenza pandemic is one of the most devastating infectious disease epidemics on record, having caused approximately 50 million deaths worldwide. Control measures, including prohibiting non-essential gatherings as well as closing cinemas and music halls, were applied with varying success and limited knowledge of transmission dynamics. One hundred years later, following developments in the field of mathematical epidemiology, models are increasingly used to guide decision-making and devise appropriate interventions that mitigate the impacts of epidemics. Epidemiological models have been used as decision-making tools during outbreaks in human, animal and plant populations. However, as the subject has developed, human, animal and plant disease modelling have diverged. Approaches have been developed independently for pathogens of each host type, often despite similarities between the models used in these complementary fields. With the increased importance of a One Health approach that unifies human, animal and plant health, we argue that more inter-disciplinary collaboration would enhance each of the related disciplines. This pair of theme issues presents research articles written by human, animal and plant disease modellers. In this introductory article, we compare the questions pertinent to, and approaches used by, epidemiological modellers of human, animal and plant pathogens, and summarize the articles in these theme issues. We encourage future collaboration that transcends disciplinary boundaries and links the closely related areas of human, animal and plant disease epidemic modelling. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Roll-out of the Global Burden of Animal Diseases programme
With continuing population growth and rising demand for food, livestock and aquaculture are integral to improving food and nutrition security, health, and livelihoods.1 These positive contributions are being undermined, however, by the negative effects of livestock production and consumption on society and the environment—eg, production of greenhouse gases, environmental degradation,2 emergence of zoonotic diseases,3 and antimicrobial resistance.4 Furthermore, excessive consumption of some livestock products is linked to risk of non-communicable diseases.5 There is little evidence available for addressing these concerns through improving livestock production and animal health systems, and no systematic approach to understanding global livestock populations and the resources invested in animals by societies globally. In 2018, the Global Burden of Animal Diseases (GBADs) programme was launched to address these vital issues.6 Since that time, we have made progress in developing a comprehensive framework for characterising livestock populations and assessing the value invested in livestock, as well as a system to capture net losses in production and societal expenditure on animal health issues (figure). There is an urgent need to develop intelligence systems able to improve decision making for people managing livestock to limit the environmental consequences and public health risks related to livestock production and consumption, while also helping people across the world access high-quality protein and micronutrients, produced in a humane way.
Bovine Colostrum: Its Constituents and Uses
Colostrum is the milk produced during the first few days after birth and contains high levels of immunoglobulins, antimicrobial peptides, and growth factors. Colostrum is important for supporting the growth, development, and immunologic defence of neonates. Colostrum is naturally packaged in a combination that helps prevent its destruction and maintain bioactivity until it reaches more distal gut regions and enables synergistic responses between protective and reparative agents present within it. Bovine colostrum been used for hundreds of years as a traditional or complementary therapy for a wide variety of ailments and in veterinary practice. Partly due to concerns about the side effects of standard Western medicines, there is interest in the use of natural-based products of which colostrum is a prime example. Numerous preclinical and clinical studies have demonstrated therapeutic benefits of bovine colostrum for a wide range of indications, including maintenance of wellbeing, treatment of medical conditions and for animal husbandry. Articles within this Special Issue of Nutrients cover the effects and use bovine colostrum and in this introductory article, we describe the main constituents, quality control and an overview of the use of bovine colostrum in health and disease.
Towards integrated surveillance-response systems for the prevention of future pandemics
Most human pathogens originate from non-human hosts and certain pathogens persist in animal reservoirs. The transmission of such pathogens to humans may lead to self-sustaining chains of transmission. These pathogens represent the highest risk for future pandemics. For their prevention, the transmission over the species barrier — although rare — should, by all means, be avoided. In the current COVID-19 pandemic, surprisingly though, most of the current research concentrates on the control by drugs and vaccines, while comparatively little scientific inquiry focuses on future prevention. Already in 2012, the World Bank recommended to engage in a systemic One Health approach for zoonoses control, considering integrated surveillance-response and control of human and animal diseases for primarily economic reasons. First examples, like integrated West Nile virus surveillance in mosquitos, wild birds, horses and humans in Italy show evidence of financial savings from a closer cooperation of human and animal health sectors. Provided a zoonotic origin can be ascertained for the COVID-19 pandemic, integrated wildlife, domestic animal and humans disease surveillance-response may contribute to prevent future outbreaks. In conclusion, the earlier a zoonotic pathogen can be detected in the environment, in wildlife or in domestic animals; and the better human, animal and environmental surveillance communicate with each other to prevent an outbreak, the lower are the cumulative costs.