Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,746 result(s) for "Animal Migration - physiology"
Sort by:
When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors
1. Information about when and where animals die is important to understand population regulation. In migratory animals, mortality might occur not only during the stationary periods (e.g. breeding and wintering) but also during the migration seasons. However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence. 2. Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry. 3. We show that mortality rate was about six times higher during migration seasons than during stationary periods. However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods. Nevertheless, more than half of the annual mortality occurred during migration. We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe. 4. Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants. We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects).
Windborne long-distance migration of malaria mosquitoes in the Sahel
Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa . Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration . Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.
Birds advancing lay dates with warming springs face greater risk of chick mortality
In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (Tachycineta bicolor). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our longterm daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe.
Scale-free correlations in starling flocks
From bird flocks to fish schools, animal groups often seem to react to environmental perturbations as if of one mind. Most studies in collective animal behavior have aimed to understand how a globally ordered state may emerge from simple behavioral rules. Less effort has been devoted to understanding the origin of collective response, namely the way the group as a whole reacts to its environment. Yet, in the presence of strong predatory pressure on the group, collective response may yield a significant adaptive advantage. Here we suggest that collective response in animal groups may be achieved through scale-free behavioral correlations. By reconstructing the 3D position and velocity of individual birds in large flocks of starlings, we measured to what extent the velocity fluctuations of different birds are correlated to each other. We found that the range of such spatial correlation does not have a constant value, but it scales with the linear size of the flock. This result indicates that behavioral correlations are scale free: The change in the behavioral state of one animal affects and is affected by that of all other animals in the group, no matter how large the group is. Scale-free correlations provide each animal with an effective perception range much larger than the direct interindividual interaction range, thus enhancing global response to perturbations. Our results suggest that flocks behave as critical systems, poised to respond maximally to environmental perturbations.
Ecological drivers of global gradients in avian dispersal inferred from wing morphology
An organism's ability to disperse influences many fundamental processes, from speciation and geographical range expansion to community assembly. However, the patterns and underlying drivers of variation in dispersal across species remain unclear, partly because standardised estimates of dispersal ability are rarely available. Here we present a global dataset of avian hand-wing index (HWI), an estimate of wing shape widely adopted as a proxy for dispersal ability in birds. We show that HWI is correlated with geography and ecology across 10,338 (>99%) species, increasing at higher latitudes and with migration, and decreasing with territoriality. After controlling for these effects, the strongest predictor of HWI is temperature variability (seasonality), with secondary effects of diet and habitat type. Finally, we also show that HWI is a strong predictor of geographical range size. Our analyses reveal a prominent latitudinal gradient in HWI shaped by a combination of environmental and behavioural factors, and also provide a global index of avian dispersal ability for use in community ecology, macroecology, and macroevolution.
Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community
Montane species worldwide are shifting upslope in response to recent temperature increases. These upslope shifts are predicted to lead to mountaintop extinctions of species that live only near mountain summits, but empirical examples of populations that have disappeared are sparse. We show that recent warming constitutes an “escalator to extinction” for birds on a remote Peruvian mountain—high-elevation species have declined in both range size and abundance, and several previously common mountaintop residents have disappeared from the local community. Our findings support projections that warming will likely drive wide-spread extirpations and extinctions of high-elevation taxa in the tropical Andes. Such climate change-driven mountaintop extirpations may be more likely in the tropics, where temperature seems to exert a stronger control on species’ range limits than in the temperate zone. In contrast, we show that lowland bird species at our study site are expanding in range size as they shift their upper limits upslope and may thus benefit from climate change.
Migrating bison engineer the green wave
Newly emerging plants provide the best forage for herbivores. To exploit this fleeting resource, migrating herbivores align their movements to surf the wave of spring green-up. With new technology to track migrating animals, the Green Wave Hypothesis has steadily gained empirical support across a diversity of migratory taxa. This hypothesis assumes the green wave is controlled by variation in climate, weather, and topography, and its progression dictates the timing, pace, and extent of migrations. However, aggregate grazers that are also capable of engineering grassland ecosystems make some of the world’s most impressive migrations, and it is unclear how the green wave determines their movements. Here we show that Yellowstone’s bison (Bison bison) do not choreograph their migratory movements to the wave of spring green-up. Instead, bison modify the green wave as they migrate and graze. While most bison surfed during early spring, they eventually slowed and let the green wave pass them by. However, small-scale experiments indicated that feedback from grazing sustained forage quality. Most importantly, a 6-fold decadal shift in bison density revealed that intense grazing caused grasslands to green up faster, more intensely, and for a longer duration. Our finding broadens our understanding of the ways in which animal movements underpin the foraging benefit of migration. The widely accepted Green Wave Hypothesis needs to be revised to include large aggregate grazers that not only move to find forage, but also engineer plant phenology through grazing, thereby shaping their own migratory movements.
Individual improvements and selective mortality shape lifelong migratory performance
Billions of organisms, from bacteria to humans, migrate each year and research on their migration biology is expanding rapidly through ever more sophisticated remote sensing technologies. However, little is known about how migratory performance develops through life for any organism. To date, age variation has been almost systematically simplified into a dichotomous comparison between recently born juveniles at their first migration versus adults of unknown age. These comparisons have regularly highlighted better migratory performance by adults compared with juveniles, but it is unknown whether such variation is gradual or abrupt and whether it is driven by improvements within the individual, by selective mortality of poor performers, or both. Here we exploit the opportunity offered by long-term monitoring of individuals through Global Positioning System (GPS) satellite tracking to combine within-individual and cross-sectional data on 364 migration episodes from 92 individuals of a raptorial bird, aged 1-27 years old. We show that the development of migratory behaviour follows a consistent trajectory, more gradual and prolonged than previously appreciated, and that this is promoted by both individual improvements and selective mortality, mainly operating in early life and during the pre-breeding migration. Individuals of different age used different travelling tactics and varied in their ability to exploit tailwinds or to cope with wind drift. All individuals seemed aligned along a race with their contemporary peers, whose outcome was largely determined by the ability to depart early, affecting their subsequent recruitment, reproduction and survival. Understanding how climate change and human action can affect the migration of younger animals may be the key to managing and forecasting the declines of many threatened migrants.
A phantom road experiment reveals traffic noise is an invisible source of habitat degradation
Decades of research demonstrate that roads impact wildlife and suggest traffic noise as a primary cause of population declines near roads. We created a “phantom road” using an array of speakers to apply traffic noise to a roadless landscape, directly testing the effect of noise alone on an entire songbird community during autumn migration. Thirty-one percent of the bird community avoided the phantom road. For individuals that stayed despite the noise, overall body condition decreased by a full SD and some species showed a change in ability to gain body condition when exposed to traffic noise during migratory stopover. We conducted complementary laboratory experiments that implicate foraging-vigilance behavior as one mechanism driving this pattern. Our results suggest that noise degrades habitat that is otherwise suitable, and that the presence of a species does not indicate the absence of an impact.
Tracking of Arctic terns Sterna paradisaea reveals longest animal migration
The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes.