Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,358
result(s) for
"Animal Structures - pathology"
Sort by:
Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis
by
Fernandes, Geisa Ferreira
,
Nishikaku, Angela Satie
,
Della Terra, Paula Portella
in
Analysis
,
Animal bites
,
Animal models
2017
Sporotrichosis is a polymorphic chronic infection of humans and animals classically acquired after traumatic inoculation with soil and plant material contaminated with Sporothrix spp. propagules. An alternative and successful route of transmission is bites and scratches from diseased cats, through which Sporothrix yeasts are inoculated into mammalian tissue. The development of a murine model of subcutaneous sporotrichosis mimicking the alternative route of transmission is essential to understanding disease pathogenesis and the development of novel therapeutic strategies. To explore the impact of horizontal transmission in animals (e.g., cat-cat) and zoonotic transmission on Sporothrix fitness, the left hind footpads of BALB/c mice were inoculated with 5×106 yeasts (n = 11 S. brasiliensis, n = 2 S. schenckii, or n = 1 S. globosa). Twenty days post-infection, our model reproduced both the pathophysiology and symptomology of sporotrichosis with suppurating subcutaneous nodules that progressed proximally along lymphatic channels. Across the main pathogenic members of the S. schenckii clade, S. brasiliensis was usually more virulent than S. schenckii and S. globosa. However, the virulence in S. brasiliensis was strain-dependent, and we demonstrated that highly virulent isolates disseminate from the left hind footpad to the liver, spleen, kidneys, lungs, heart, and brain of infected animals, inducing significant and chronic weight loss (losing up to 15% of their body weight). The weight loss correlated with host death between 2 and 16 weeks post-infection. Histopathological features included necrosis, suppurative inflammation, and polymorphonuclear and mononuclear inflammatory infiltrates. Immunoblot using specific antisera and homologous exoantigen investigated the humoral response. Antigenic profiles were isolate-specific, supporting the hypothesis that different Sporothrix species can elicit a heterogeneous humoral response over time, but cross reaction was observed between S. brasiliensis and S. schenckii proteomes. Despite great diversity in the immunoblot profiles, antibodies were mainly derived against 3-carboxymuconate cyclase, a glycoprotein oscillating between 60 and 70 kDa (gp60-gp70) and a 100-kDa molecule in nearly 100% of the assays. Thus, our data broaden the current view of virulence and immunogenicity in the Sporothrix-sporotrichosis system, substantially expanding the possibilities for comparative genomic with isolates bearing divergent virulence traits and helping uncover the molecular mechanisms and evolutionary pressures underpinning the emergence of Sporothrix virulence.
Journal Article
A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots
2012
Quantum dots have been used in biomedical research for imaging
1
,
2
, diagnostics
3
,
4
and sensing purposes
5
,
6
. However, concerns over the cytotoxicity of their heavy metal constituents
7
,
8
and conflicting results from
in vitro
7
,
9
and small animal
10
,
11
,
12
,
13
,
14
toxicity studies have limited their translation towards clinical applications. Here, we show in a pilot study that rhesus macaques injected with phospholipid micelle-encapsulated CdSe/CdS/ZnS quantum dots do not exhibit evidence of toxicity. Blood and biochemical markers remained within normal ranges following treatment, and histology of major organs after 90 days showed no abnormalities. Our results show that acute toxicity of these quantum dots
in vivo
can be minimal. However, chemical analysis revealed that most of the initial dose of cadmium remained in the liver, spleen and kidneys after 90 days. This means that the breakdown and clearance of quantum dots is quite slow, suggesting that longer-term studies will be required to determine the ultimate fate of these heavy metals and the impact of their persistence in primates.
Six rhesus macaques injected with a cadmium-based quantum-dot formulation survived without any evidence of toxicity, but cadmium remained in certain organs after 90 days.
Journal Article
Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice
by
Dennis, Mike
,
Rayner, Emma
,
Atkinson, Barry
in
Animal diseases
,
Animal models
,
Animal Structures - pathology
2017
Zika virus (ZIKV) falls into two lineages: African (ZIKVAF) and Asian (ZIKVAS). These lineages have not been tested comprehensively in parallel for disease progression using an animal model system. Here, using the established type-I interferon receptor knockout (A129) mouse model, it is first demonstrated that ZIKVAF causes lethal infection, with different kinetics of disease manifestations according to the challenge dose. Animals challenged with a low dose of 10 plaque-forming units (pfu) developed more neurological symptoms than those challenged with 5-log higher doses. By contrast, animals challenged with ZIKVAS displayed no clinical signs or mortality, even at doses of 106 pfu. However, viral RNA was detected in the tissues of animals infected with ZIKV strains from both lineages and similar histological changes were observed. The present study highlights strain specific virulence differences between the African and Asian lineages in a ZIKV mouse model.
Journal Article
A Mouse Model of Shigellosis by Intraperitoneal Infection
by
Kweon, Mi-Na
,
Yang, Jin-Young
,
Ryu, Sangryeol
in
Animal Structures - microbiology
,
Animal Structures - pathology
,
Animals
2014
In human and nonhuman primates, Shigella spp. cause bacillary dysentery by invading colon epithelium and promoting a strong inflammatory response; however, adult mice are resistant to oral Shigella infection. In this study, intraperitoneal challenge with virulent S. flexneri 2a (YSH6000) resulted in diarrhea and severe body weight loss in adult B6 mice. Of note, virulent S. flexneri 2a could invade and colonize not only systemic tissues but also the serosa and lamina propria region of the large intestine. In addition, epithelial shedding, barrier integrity, and goblet cell hyperplasia were found in the large intestine by 24 hours post-intraperitoneal Shigella infection. Of note, predominant expression of proinflammatory cytokines and chemokines were found in the large intestine after intraperitoneal challenge. Monocytes played a critical role in attenuating diarrhea and in providing protective efficacy against intraperitoneal Shigella infection. Most importantly, mice prevaccinated with attenuated S. flexneri 2a (SC602) strain were protected against intraperitoneal challenge with YSH6000. When taken together, these findings show that intraperitoneal challenge with virulent S. flexneri 2a can provoke bacillary dysentery and severe pathogenesis in adult mice. This model may be helpful for understanding the induction mechanism of bacillary dysentery and for evaluating Shigella vaccine candidates.
Journal Article
Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites
by
Bukauskaitė, Dovilė
,
Dinhopl, Nora
,
Ilgūnas, Mikas
in
Animal Experimentation
,
Animal Structures - pathology
,
Animals
2016
Background: Species of avian malaria parasites (Plasmodium) are widespread, but their virulence has been insufficiently investigated, particularly in wild birds. During avian malaria, several cycles of tissue merogony occur, and many Plasmodium spp. produce secondary exoerythrocytic meronts (phanerozoites), which are induced by merozoites developing in erythrocytic meronts. Phanerozoites markedly damage organs, but remain insufficiently investigated in the majority of described Plasmodium spp. Avian malaria parasite Plasmodium (Giovannolaia) homocircumflexum (lineage pCOLL4) is virulent and produces phanerozoites in domestic canaries Serinus canaria, but its pathogenicity in wild birds remains unknown. The aim of this study was to investigate the pathology caused by this infection in species of common European birds. Methods: One individual of Eurasian siskin Carduelis spinus, common crossbill Loxia curvirostra and common starling Sturnus vulgaris were exposed to P. homocircumflexum infection by intramuscular sub-inoculation of infected blood. The birds were maintained in captivity and parasitaemia was monitored until their death due to malaria. Brain, heart, lungs, liver, spleen, kidney, and a piece of breast muscle were examined using histology and chromogenic in situ hybridization (ISH) methods. Results: All exposed birds developed malaria infection, survived the peak of parasitaemia, but suddenly died between 30 and 38 days post exposure when parasitaemia markedly decreased. Numerous phanerozoites were visible in histological sections of all organs and were particularly easily visualized after ISH processing. Blockage of brain capillaries with phanerozoites may have led to cerebral ischaemia, causing cerebral paralysis and is most likely the main reason of sudden death of all infected individuals. Inflammatory response was not visible around the brain, heart and muscle phanerozoites, and it was mild in parenchymal organs. The endothelial damage likely causes dysfunction and failure of parenchymal organs. Conclusion: Plasmodium homocircumflexum caused death of experimental passerine birds due to marked damage of organs by phanerozoites. Patterns of phanerozoites development and pathology were similar in all exposed birds. Mortality was reported when parasitaemia decreased or even turned into chronic stage, indicating that the light parasitaemia is not always indication of improved health during avian malaria. Application of traditional histological and ISH methods in parallel simplifies investigation of exoerythrocytic development and is recommended in avian malaria research.
Journal Article
Imaging the development of chronic Chagas disease after oral transmission
2018
Chagas disease is a zoonosis caused by the protozoan parasite
Trypanosoma cruzi
. Transmission cycles are maintained by haematophagous triatomine bug vectors that carry infective
T. cruzi
in their faeces. Most human infections are acquired by contamination of mucosal membranes with triatomine faeces after being bitten, however,
T. cruzi
can be transmitted by several other routes. Oral transmission is an increasingly important aspect of Chagas disease epidemiology, typically involving food or drink products contaminated with triatomines. This has recently caused numerous outbreaks and been linked to unusually severe acute infections. The long-term impact of oral transmission on infection dynamics and disease pathogenesis is unclear. We used highly sensitive bioluminescence imaging and quantitative histopathology to study orally transmitted
T. cruzi
infections in mice. Both metacyclic and bloodform trypomastigotes were infectious via the oral cavity, but only metacyclics led to established infections by intra-gastric gavage. Mice displayed only mild acute symptoms but later developed significantly increased myocardial collagen content (
p
= 0.017), indicative of fibrosis. Gastrointestinal tissues and skin were the principal chronic infection reservoirs. Chronic phase parasite load profiles, tissue distribution and myocardial fibrosis severity were comparable to needle-injected controls. Thus, the oral route neither exacerbates nor ameliorates experimental Chagas disease.
Journal Article
Sequestration and histopathology in Plasmodium chabaudi malaria are influenced by the immune response in an organ‐specific manner
by
Jarra, William
,
Cunningham, Deirdre
,
Thompson, Joanne
in
Animal Structures - immunology
,
Animal Structures - parasitology
,
Animal Structures - pathology
2014
Summary Infection with the malaria parasite, Plasmodium, is associated with a strong inflammatory response and parasite cytoadhesion (sequestration) in several organs. Here, we have carried out a systematic study of sequestration and histopathology during infection of C57Bl/6 mice with Plasmodium chabaudi AS and determined the influence of the immune response. This parasite sequesters predominantly in liver and lung, but not in the brain, kidney or gut. Histopathological changes occur in multiple organs during the acute infection, but are not restricted to the organs where sequestration takes place. Adaptive immunity, and signalling through the IFNγ receptor increased sequestration and histopathology in the liver, but not in the lung, suggesting that there are differences in the adhesion molecules and/or parasite ligands utilized and mechanisms of pathogenesis in these two organs. Exacerbation of pro‐inflammatory responses during infection by deletion of the il10 gene resultsin the aggravation of damage to lung and kidney irrespective of the degree of sequestration. The immune response therefore affected both sequestration and histopathology in an organ‐specific manner. P. chabaudi AS provides a good model to investigate the influence of the host response on the sequestration and specific organ pathology, which is applicable to human malaria.
Journal Article
Acute Oral Toxicity of Methanolic Seed Extract of Cassia fistula in Mice
by
Jothy, Subramanion L.
,
Latha, Lachimanan Yoga
,
Chen, Yeng
in
acute oral toxicity
,
Administration, Oral
,
Animal Structures - drug effects
2011
Background and objective: Cassia fistula is widely used in traditional medicine to treat various types of ailments. The evaluation of toxic properties of C. fistula is crucial when considering public health protection because exposure to plant extracts can result in undesirable effects on consumers. Hence, in this study the acute oral toxicity of C. fistula seeds extract was investigated in mice. Results: Oral administration of crude extract at the highest dose of 5000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that C. fistula in nontoxic. Throughout 14 days of the treatment no changes in behavioural pattern, clinical sign and body weight of mice in both control and treatment groups. Also there were no any significant elevations observed in the biochemical analysis of the blood serum. Further, histopathological examination revealed normal architecture and no significant adverse effects observed on the kidney, heart, liver, lung and spleen. Conclusions: Overall, the results suggest that, the oral administration of C. fistula methanolic seeds extract did not produce any significant toxic effect in mice. Hence, the extract can be utilized for pharmaceutical formulations.
Journal Article
Xanthine oxidase inhibition by febuxostat attenuates stress-induced hyperuricemia, glucose dysmetabolism, and prothrombotic state in mice
2017
Chronic stress is closely linked to the metabolic syndrome, diabetes, hyperuricemia and thromboembolism, but the mechanisms remain elusive. We reported recently that stress targets visceral adipose tissue (VAT), inducing lipolysis, low-grade inflammation with production of inflammatory adipokines, metabolic derangements such as insulin resistance, and prothrombotic state. In the present study, we hypothesized the involvement of VAT xanthine oxidoreductase (XOR), a source of reactive oxygen species (ROS) and uric acid (UA) in the above processes. Restraint stress in mice resulted in upregulation of XOR and xanthine oxidase activity, accumulation of ROS in VAT as well as liver and intestine, increase in serum UA levels, upregulation of NADPH oxidase subunits and downregulation of antioxidant enzymes. Immunohistochemistry and RT-PCR analysis also showed that restraint stress induced VAT monocyte accumulation and proinflammatory adipokine production, resulting in reduced insulin sensitivity and induction of plasminogen activator inhibitor-1 and tissue factor in VAT. Treatment with febuxostat, a potent XO inhibitor, suppressed stress-induced ROS production and VAT inflammation, resulting in improvement of serum UA levels, insulin sensitivity, and prothrombotic tendency. Our results suggest that stress perturbs glucose and UA metabolism, and promotes prothrombotic status, and that XO inhibition by febuxostat might be a potential therapy for stress-related disorders.
Journal Article
A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning
by
Zhang, Xiangjun
,
Wang, Ruibing
,
Li, Lanlan
in
Administration, Oral
,
Animal Structures - pathology
,
Animals
2019
Accidental or suicidal ingestion of the world's most widely used herbicide, paraquat (PQ), may result in rapid multi-organ failure with a 60% fatality rate due to the absence of an effective detoxification solution. Effective, specific antidotes to PQ poisoning have been highly desired.
The binding constant of PQ and a synthetic receptor, cucurbit[7]uril (CB[7]), was first determined in various pH environments. The antidotal effects of CB[7] on PQ toxicity were firstly evaluated with
cell lines. With
mice models, the pharmacokinetics and the biodistribution of PQ in major organs were determined to evaluate the influence of CB[7] on the oral bioavailability of PQ. Major organs' injuries and overall survival rates of the mice were systemically examined to evaluate the therapeutic efficacy of CB[7] on PQ poisoning.
We demonstrate that CB[7] may complex PQ strongly under various conditions and significantly reduce its toxicity
and
. Oral administration of PQ in the presence of CB[7] in a mouse model significantly decreased PQ levels in the plasma and major organs and alleviated major organs' injuries, when compared to those of mice administered with PQ alone. Further studies indicated that oral administration of CB[7] within 2 h post PQ ingestion significantly increased the survival rates and extended the survival time of the mice, in contrast to the ineffective treatment by activated charcoal, which is commonly recommended for PQ decontamination.
CB[7] may be used as a specific oral antidote for PQ poisoning by strongly binding with PQ and inhibiting its absorption in the gastrointestinal tracts.
Journal Article