Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8,831
result(s) for
"Animal vocalization"
Sort by:
Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires
by
Gentner, Timothy Q.
,
Sainburg, Tim
,
Thielk, Marvin
in
Acoustics
,
Algorithms
,
Animal communication
2020
Animals produce vocalizations that range in complexity from a single repeated call to hundreds of unique vocal elements patterned in sequences unfolding over hours. Characterizing complex vocalizations can require considerable effort and a deep intuition about each species' vocal behavior. Even with a great deal of experience, human characterizations of animal communication can be affected by human perceptual biases. We present a set of computational methods for projecting animal vocalizations into low dimensional latent representational spaces that are directly learned from the spectrograms of vocal signals. We apply these methods to diverse datasets from over 20 species, including humans, bats, songbirds, mice, cetaceans, and nonhuman primates. Latent projections uncover complex features of data in visually intuitive and quantifiable ways, enabling high-powered comparative analyses of vocal acoustics. We introduce methods for analyzing vocalizations as both discrete sequences and as continuous latent variables. Each method can be used to disentangle complex spectro-temporal structure and observe long-timescale organization in communication.
Journal Article
SeqFusionNet: A hybrid model for sequence-aware and globally integrated acoustic representation
2025
Animals communicate information primarily via their calls, and directly using their vocalizations proves essential for executing species conservation and tracking biodiversity. Conventional visual approaches are frequently limited by distance and surroundings, while call-based monitoring concentrates solely on the animals themselves, proving more effective and straightforward than visual techniques. This paper introduces an animal sound classification model named SeqFusionNet, integrating the sequential encoding of Transformer with the global perception of MLP to achieve robust global feature extraction. Research involved compiling and organizing four common acoustic datasets (pig, bird, urbansound, and marine mammal), with extensive experiments exploring the applicability of vocal features across species and the model’s recognition capabilities. Experimental results validate SeqFusionNet’s efficacy in classifying animal calls: it identifies four pig call types at 95.00% accuracy, nine and six bird categories at 94.52% and 95.24% respectively, fifteen and eleven marine mammal types reaching 96.43% and 97.50% accuracy, while attaining 94.39% accuracy on ten urban sound categories. Comparative analysis shows our method surpasses existing approaches. Beyond matching reference models on UrbanSound8K, SeqFusionNet demonstrates strong robustness and generalization across species. This research offers an expandable, efficient framework for automated bioacoustic monitoring, supporting wildlife preservation, ecological studies, and environmental sound analysis applications.
Journal Article
Crowd vocal learning induces vocal dialects in bats: Playback of conspecifics shapes fundamental frequency usage by pups
2017
Vocal learning, the substrate of human language acquisition, has rarely been described in other mammals. Often, group-specific vocal dialects in wild populations provide the main evidence for vocal learning. While social learning is often the most plausible explanation for these intergroup differences, it is usually impossible to exclude other driving factors, such as genetic or ecological backgrounds. Here, we show the formation of dialects through social vocal learning in fruit bats under controlled conditions. We raised 3 groups of pups in conditions mimicking their natural roosts. Namely, pups could hear their mothers' vocalizations but were also exposed to a manipulation playback. The vocalizations in the 3 playbacks mainly differed in their fundamental frequency. From the age of approximately 6 months and onwards, the pups demonstrated distinct dialects, where each group was biased towards its playback. We demonstrate the emergence of dialects through social learning in a mammalian model in a tightly controlled environment. Unlike in the extensively studied case of songbirds where specific tutors are imitated, we demonstrate that bats do not only learn their vocalizations directly from their mothers, but that they are actually influenced by the sounds of the entire crowd. This process, which we term \"crowd vocal learning,\" might be relevant to many other social animals such as cetaceans and pinnipeds.
Journal Article
Ultrasonic signals associated with different types of social behavior of mice
by
Warren, Megan R
,
Neunuebel, Joshua P
,
Sangiamo, Daniel T
in
Algorithms
,
Animal behavior
,
Group dynamics
2020
Communication plays an integral role in human social dynamics and is impaired in several neurodevelopmental disorders. Mice are used to study the neurobiology of social behavior; however, the extent to which mouse vocalizations influence social dynamics has remained elusive because it is difficult to identify the vocalizing animal among mice involved in a group interaction. By tracking the ultrasonic vocal behavior of individual mice and using an algorithm developed to group phonically similar signals, we showed that distinct patterns of vocalization emerge as male mice perform specific social actions. Mice dominating other mice were more likely to emit different vocal signals than mice avoiding social interactions. Furthermore, we showed that the patterns of vocal expression influence the behavior of the socially engaged partner but do not influence the behavior of other animals in the cage. These findings clarify the function of mouse communication by revealing a communicative ultrasonic signaling repertoire.A sound source localization system reveals behavior-dependent vocal emission and thereby unmasks functions of social vocalization.
Journal Article
Explainable classification of goat vocalizations using convolutional neural networks
by
Ntalampiras, Stavros
,
Pesando Gamacchio, Gabriele
in
Acoustic properties
,
Agricultural research
,
Agriculture
2025
Efficient precision livestock farming relies on having timely access to data and information that accurately describes both the animals and their surrounding environment. This paper advances classification of goat vocalizations leveraging a publicly available dataset recorded at diverse farms breeding different species. We developed a Convolutional Neural Network (CNN) architecture tailored for classifying goat vocalizations, yielding an average classification rate of 95.8% in discriminating various goat emotional states. To this end, we suitably augmented the existing dataset using pitch shifting and time stretching techniques boosting the robustness of the trained model. After thoroughly demonstrating the superiority of the designed architecture over the contrasting approaches, we provide insights into the underlying mechanisms governing the proposed CNN by carrying out an extensive interpretation study. More specifically, we conducted an explainability analysis to identify the time-frequency content within goat vocalisations that significantly impacts the classification process. Such an XAI-driven validation not only provides transparency in the decision-making process of the CNN model but also sheds light on the acoustic features crucial for distinguishing the considered classes. Last but not least, the proposed solution encompasses an interactive scheme able to provide valuable information to animal scientists regarding the analysis performed by the model highlighting the distinctive components of the considered goat vocalizations. Our findings underline the effectiveness of data augmentation techniques in bolstering classification accuracy and highlight the significance of leveraging XAI methodologies for validating and interpreting complex machine learning models applied to animal vocalizations.
Journal Article
Sensory pollutants alter bird phenology and fitness across a continent
by
Phillips, Jennifer N.
,
Cooper, Caren B.
,
Vukomanovic, Jelena
in
631/158/672
,
631/158/858
,
704/158/851
2020
Expansion of anthropogenic noise and night lighting across our planet
1
,
2
is of increasing conservation concern
3
–
6
. Despite growing knowledge of physiological and behavioural responses to these stimuli from single-species and local-scale studies, whether these pollutants affect fitness is less clear, as is how and why species vary in their sensitivity to these anthropic stressors. Here we leverage a large citizen science dataset paired with high-resolution noise and light data from across the contiguous United States to assess how these stimuli affect reproductive success in 142 bird species. We find responses to both sensory pollutants linked to the functional traits and habitat affiliations of species. For example, overall nest success was negatively correlated with noise among birds in closed environments. Species-specific changes in reproductive timing and hatching success in response to noise exposure were explained by vocalization frequency, nesting location and diet. Additionally, increased light-gathering ability of species’ eyes was associated with stronger advancements in reproductive timing in response to light exposure, potentially creating phenological mismatches
7
. Unexpectedly, better light-gathering ability was linked to reduced clutch failure and increased overall nest success in response to light exposure, raising important questions about how responses to sensory pollutants counteract or exacerbate responses to other aspects of global change, such as climate warming. These findings demonstrate that anthropogenic noise and light can substantially affect breeding bird phenology and fitness, and underscore the need to consider sensory pollutants alongside traditional dimensions of the environment that typically inform biodiversity conservation.
Human-generated noise and night lighting affect breeding habits and fitness in birds, implying that sensory pollutants must be considered alongside other environmental factors in assessing biodiversity conservation.
Journal Article
Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning
by
ten Cate, Carel
,
Okanoya, Kazuo
in
Acoustic Stimulation - methods
,
Animal vocalization
,
Animals
2012
The domain of syntax is seen as the core of the language faculty and as the most critical difference between animal vocalizations and language. We review evidence from spontaneously produced vocalizations as well as from perceptual experiments using artificial grammars to analyse animal syntactic abilities, i.e. abilities to produce and perceive patterns following abstract rules. Animal vocalizations consist of vocal units (elements) that are combined in a species-specific way to create higher order strings that in turn can be produced in different patterns. While these patterns differ between species, they have in common that they are no more complex than a probabilistic finite-state grammar. Experiments on the perception of artificial grammars confirm that animals can generalize and categorize vocal strings based on phonetic features. They also demonstrate that animals can learn about the co-occurrence of elements or learn simple ‘rules’ like attending to reduplications of units. However, these experiments do not provide strong evidence for an ability to detect abstract rules or rules beyond finite-state grammars. Nevertheless, considering the rather limited number of experiments and the difficulty to design experiments that unequivocally demonstrate more complex rule learning, the question of what animals are able to do remains open.
Journal Article
Acute off-target effects of neural circuit manipulations
2015
Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.
Transient manipulation of neural activity is widely used to probe the function of specific circuits, yet such targeted perturbations could also have indirect effects on downstream circuits that implement separate and independent functions; a study to test this reveals that transient perturbations of specific circuits in mammals and songbirds severely impair learned skills that recover spontaneously after permanent lesions of the same brain areas.
Confounding effects of optogenetics
The development of optogenetics as a specific tool to probe the function of genetically defined neural circuits in the execution of specific behaviours has been a prominent field of recent growth in neuroscience. However, many of these studies disregard the potential for indirect effects of circuit manipulation on other downstream circuits operating independently in separate functions. Here, Bence Ölveczky and colleagues reveal how transient inactivation of specific circuits in mammals and songbirds can severely impair task-specific responses that otherwise spontaneously recover after permanent lesions of the same brain areas. This suggests that additional considerations must be taken into account when interpreting data from transient circuit manipulations of behaviour.
Journal Article
Multiclass CNN Approach for Automatic Classification of Dolphin Vocalizations
by
De Marco, Rocco
,
Li Veli, Daniel
,
Lucchetti, Alessandro
in
Acoustics
,
Algorithms
,
Animal vocalization
2025
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for classifying dolphin vocalizations from a PAM acoustic recording using a convolutional neural network (CNN). Four types of common bottlenose dolphin (Tursiops truncatus) vocalizations were identified from underwater recordings: whistles, echolocation clicks, burst pulse sounds, and feeding buzzes. To enhance classification performances, edge-detection filters were applied to spectrograms, with the aim of removing unwanted noise components. A dataset of nearly 10,000 spectrograms was used to train and test the CNN through a 10-fold cross-validation procedure. The results showed that the CNN achieved an average accuracy of 95.2% and an F1-score of 87.8%. The class-specific results showed a high accuracy for whistles (97.9%), followed by echolocation clicks (94.5%), feeding buzzes (94.0%), and burst pulse sounds (92.3%). The highest F1-score was obtained for whistles, exceeding 95%, while the other three vocalization typologies maintained an F1-score above 80%. This method provides a promising step toward improving the passive acoustic monitoring of dolphins, contributing to both species conservation and the mitigation of conflicts with fisheries.
Journal Article
Predictive coding under the free-energy principle
2009
This paper considers prediction and perceptual categorization as an inference problem that is solved by the brain. We assume that the brain models the world as a hierarchy or cascade of dynamical systems that encode causal structure in the sensorium. Perception is equated with the optimization or inversion of these internal models, to explain sensory data. Given a model of how sensory data are generated, we can invoke a generic approach to model inversion, based on a free energy bound on the model's evidence. The ensuing free-energy formulation furnishes equations that prescribe the process of recognition, i.e. the dynamics of neuronal activity that represent the causes of sensory input. Here, we focus on a very general model, whose hierarchical and dynamical structure enables simulated brains to recognize and predict trajectories or sequences of sensory states. We first review hierarchical dynamical models and their inversion. We then show that the brain has the necessary infrastructure to implement this inversion and illustrate this point using synthetic birds that can recognize and categorize birdsongs.
Journal Article