Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,823 result(s) for "Animals, Domestic - parasitology"
Sort by:
Strongyloides spp. infections of veterinary importance
This paper reviews the occurrence and impact of threadworms, Strongyloides spp., in companion animals and large livestock, the potential zoonotic implications and future research. Strongyloides spp. infect a range of domestic animal species worldwide and clinical disease is most often encountered in young animals. Dogs are infected with Strongyloides stercoralis while cats are infected with different species according to geographical location (Strongyloides felis, Strongyloides tumefaciens, Strongyloides planiceps and perhaps S. stercoralis). In contrast to the other species, lactogenic transmission is not a primary means of infection in dogs, and S. stercoralis is the only species considered zoonotic. Strongyloides papillosus in calves has been linked to heavy fatalities under conditions of high stocking density. Strongyloides westeri and Strongyloides ransomi of horses and pigs, respectively, cause only sporadic clinical disease. In conclusion, these infections are generally of low relative importance in livestock and equines, most likely due to extensive use of macrocyclic lactone anthelmintics and/or improved hygiene. Future prevalence studies need to include molecular typing of Strongyloides species in relation to different hosts. More research is urgently needed on the potential zoonotic capacity of Strongyloides from dogs and cats based on molecular typing, information on risk factors and mapping of transmission routes.
Control of helminth ruminant infections by 2030
Helminth infections have large negative impacts on production efficiency in ruminant farming systems worldwide, and their effective management is essential if livestock production is to increase to meet future human needs for dietary protein. The control of helminths relies heavily on routine use of chemotherapeutics, but this approach is unsustainable as resistance to anthelmintic drugs is widespread and increasing. At the same time, infection patterns are being altered by changes in climate, land-use and farming practices. Future farms will need to adopt more efficient, robust and sustainable control methods, integrating ongoing scientific advances. Here, we present a vision of helminth control in farmed ruminants by 2030, bringing to bear progress in: (1) diagnostic tools, (2) innovative control approaches based on vaccines and selective breeding, (3) anthelmintics, by sustainable use of existing products and potentially new compounds, and (4) rational integration of future control practices. In this review, we identify the technical advances that we believe will place new tools in the hands of animal health decision makers in 2030, to enhance their options for control and allow them to achieve a more integrated and sustainable approach to helminth control in support of animal welfare and production.
Modulation of innate immunity by Toxoplasma gondii virulence effectors
Key Points The parasite Toxoplasma gondii is extremely widespread in animals and is a common cause of food- and water-borne infection in people. Although most infections are benign, they can have severe consequences in immunocompromised patients and following congenital infection. T. gondii is regarded as a model intracellular parasite for which forward- and reverse-genetics tools are available. In combination with the mouse model of toxoplasmosis (including the many genetic knockout and transgenic mouse lines that are available), these tools for genetic manipulation of the parasite have enabled researchers to explore the molecular determinants of T. gondii pathogenesis and host defence. Forward-genetics crosses conducted in T. gondii , using strains of different genotypes and virulences in mice, revealed that acute virulence is largely mediated by a family of effector proteins that are secreted into the host cell cytoplasm during parasite invasion. These proteins are derived from a secretory organelle called the rhoptry and, hence, are called ROP effectors. ROPs include a family of serine/threonine kinases that affect host targets and have important roles in infection in the mouse. Among these, ROP18 phosphorylates immunity-related GTPases, thus promoting parasite survival in activated macrophages, whereas ROP16 phosphorylates signal transducer and activator of transcription 3 (STAT3) and STAT6 and, hence, alters host gene transcription. Curiously, the activity of ROP18 is mediated by another family member called ROP5, which is a pseudokinase. Although a limited subset of ROP kinases can largely explain the virulence of T. gondii in the mouse, their role in other hosts has not been established. The genome encodes more than 40 ROPs, and these different proteins might have distinct roles during infection in the wide range of hosts infected by T. gondii . Understanding these patterns might help in the prevention and treatment of human infections. The intracellular parasite Toxoplasma gondii can infect a range of hosts and occasionally causes serious disease in humans. In this Review, Hunter and Sibley summarize recent studies that implicate rhoptry kinases and a dense-granule protein as mediators of acute virulence in the mouse model. They also describe the complex interplay between these parasite effector proteins and the innate immune system. Toxoplasma gondii is a common parasite of animals and humans and can cause serious opportunistic infections. However, the majority of infections are asymptomatic, possibly because the organism has co-evolved with its many vertebrate hosts and has developed multiple strategies to persist asymptomatically for the lifetime of the host. Over the past two decades, infection studies in the mouse, combined with forward-genetics approaches aimed at unravelling the molecular basis of infection, have revealed that T. gondii virulence is mediated, in part, by secretion of effector proteins into the host cell during invasion. Here, we review recent advances that illustrate how these virulence factors disarm innate immunity and promote survival of the parasite.
Principles of veterinary parasitology
Principles of Veterinary Parasitology Principles of Veterinary Parasitology is a student-friendly introduction to veterinary parasitology. Written primarily to meet the immediate needs of veterinary students, this textbook outlines the essential parasitological knowledge needed to underpin clinical practice. Conceptual relationships between parasitic organisms, their biology and the diseases they cause are clearly illustrated. Help boxes and practical tips are included throughout alongside a wealth of colour photographs, drawings and life-cycle diagrams. Organised taxonomically with additional host-orientated chapters and focussing on parasites that commonly cause animal or zoonotic disease, welfare problems or economic losses, students worldwide will benefit from this straightforward and easy to comprehend introduction to veterinary parasitology. KEY FEATURES * An easy to navigate textbook, providing information essential for clinical studies * Full colour throughout, with photographs, diagrams, life-cycles and help boxes for visual learners * A companion website including a pronunciation guide, self-assessment questions and further reading lists This book is accompaines by a companion website: WWW.wiley.com/go/jacobs/principles-veterinay-parasitology The website includes: * Glossary * Parasites listed by host and body system * Pronunciation guide * Parasite recogonition: flease, flies,worms and worm eggs * Revision questions and answers * Further reading list: books, articles and websites * Powerpoint files of all diagrame for downloading
Toxoplasma gondii infection in wild mustelids and cats across an urban-rural gradient
The increase in human population and domestic pets, such as cats, are generating important consequences in terms of habitat loss and pathogen pollution of coastal ecosystems with potential to generate negative impacts in marine biodiversity. Toxoplasma gondii is the etiological agent of zoonotic disease toxoplasmosis, and is associated with cat abundance and anthropogenic disturbance. The presence of T. gondii oocysts in the ocean has negatively affected the health status of the threatened Southern sea otter (Enhydra lutris nereis) populations. The present study analyzed seroprevalence and presence of T. gondii DNA in American mink (Neovison vison), Southern river otters (Lontra provocax) and domestic cats (Felis silvestris catus) in four different areas in Southern Chile comprising studies in rivers and lakes in Andean foothills and mountains, marine habitat and island coastal ecosystems. Mean seroprevalence of T. gondii in the study was 64% of 151 total animals sampled: 59% of 73 American mink, 77% of 13 Southern river otters, 68% of 65 domestic cats and in two of two kodkods (Leopardus guigna). Toxoplasma gondii DNA was detected in tissues from one American mink and one Southern river otter. The present study confirms the widespread distribution of T. gondii in Southern Chile, and shows a high exposure of semiaquatic mustelids and domestic cats to the parasite. Cats and anthropogenic disturbance have a role in the maintenance of T. gondii infection in ecosystems of southern Chile.
Disease mortality in domesticated animals is predicted by host evolutionary relationships
Infectious diseases of domesticated animals impact human well-being via food insecurity, loss of livelihoods, and human infections. While much research has focused on parasites that infect single host species, most parasites of domesticated mammals infect multiple species. The impact of multihost parasites varies across hosts; some rarely result in death, whereas others are nearly always fatal. Despite their high ecological and societal costs, we currently lack theory for predicting the lethality of multihost parasites. Here, using a global dataset of >4,000 case-fatality rates for 65 infectious diseases (caused by microparasites and macroparasites) and 12 domesticated host species, we show that the average evolutionary distance from an infected host to other mammal host species is a strong predictor of disease-induced mortality. We find that as parasites infect species outside of their documented phylogenetic host range, they are more likely to result in lethal infections, with the odds of death doubling for each additional 10 million years of evolutionary distance. Our results for domesticated animal diseases reveal patterns in the evolution of highly lethal parasites that are difficult to observe in the wild and further suggest that the severity of infectious diseases may be predicted from evolutionary relationships among hosts.
Epidemiology and Molecular Characterization of Cryptosporidium spp. in Humans, Wild Primates, and Domesticated Animals in the Greater Gombe Ecosystem, Tanzania
Cryptosporidium is an important zoonotic parasite globally. Few studies have examined the ecology and epidemiology of this pathogen in rural tropical systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. We investigated risk factors for Cryptosporidium infection and assessed cross-species transmission potential among people, non-human primates, and domestic animals in the Gombe Ecosystem, Kigoma District, Tanzania. A cross-sectional survey was designed to determine the occurrence and risk factors for Cryptosporidium infection in humans, domestic animals and wildlife living in and around Gombe National Park. Diagnostic PCR revealed Cryptosporidium infection rates of 4.3% in humans, 16.0% in non-human primates, and 9.6% in livestock. Local streams sampled were negative. DNA sequencing uncovered a complex epidemiology for Cryptosporidium in this system, with humans, baboons and a subset of chimpanzees infected with C. hominis subtype IfA12G2; another subset of chimpanzees infected with C. suis; and all positive goats and sheep infected with C. xiaoi. For humans, residence location was associated with increased risk of infection in Mwamgongo village compared to one camp (Kasekela), and there was an increased odds for infection when living in a household with another positive person. Fecal consistency and other gastrointestinal signs did not predict Cryptosporidium infection. Despite a high degree of habitat overlap between village people and livestock, our results suggest that there are distinct Cryptosporidium transmission dynamics for humans and livestock in this system. The dominance of C. hominis subtype IfA12G2 among humans and non-human primates suggest cross-species transmission. Interestingly, a subset of chimpanzees was infected with C. suis. We hypothesize that there is cross-species transmission from bush pigs (Potaochoerus larvatus) to chimpanzees in Gombe forest, since domesticated pigs are regionally absent. Our findings demonstrate a complex nature of Cryptosporidium in sympatric primates, including humans, and stress the need for further studies.
Detection and molecular characterization of Blastocystis sp., Enterocytozoon bieneusi and Giardia duodenalis in asymptomatic animals in southeastern Iran
Domestic animals can harbor a variety of enteric unicellular eukaryotic parasites (EUEP) with zoonotic potential that pose risks to human health. The aim of this study was to evaluate the occurrence and genetic diversity of EUEP of zoonotic relevance in domestic animals in Iran. Faecal samples were collected from cattle, sheep, camels, goats, donkeys, horse, and dogs. A real-time PCR was performed to detect the parasites, followed by sequence-based genotyping analyses on isolates that tested positive for Enterocytozoon bieneusi , Giardia duodenalis , and Blastocystis sp.. Overall, 53 out of 200 faecal samples (26.5%, 95% CI 20.5–33.2) were positive for one or more EUEP. Enterocytozoon bieneusi was found in 23.8%, 12.0%, 26.1%, and 13.3% of cattle, sheep, goats, and camels, respectively. Giardia duodenalis was identified in 19.3% of cattle and 6.7% of camels. Blastocystis sp. was detected in 5.7% of cattle and 16.7% of camels. Enterocytozoon bieneusi genotypes macaque1, J, BEB6, and CHG3 were identified in 3.7% (1/27), 3.7% (1/27), 44.4% (12/27), and 48.2% (13/27) of the isolates, respectively. Giardia duodenalis assemblage B and Blastocystis subtype 10 were identified in one cattle and one camel isolate, respectively. These findings suggest that domestic animals could serve as potential reservoirs for EUEP of zoonotic relevance and might play a significant role in transmitting these parasites to humans and other animals.
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Evaluation of prevalence and risk factors associated with Cryptosporidium infection in rural population of district Buner, Pakistan
Cryptosporidium spp are important intestinal protozoan parasites that cause diarrhea in humans, domestic and wild animals. Its infection remains a main public health concern however, the epidemics in human being is still unclear, particularly in developing countries. There are several factors that may enhance the spreading of this parasite in human population especially in young children. A questionnaire was designed to obtain the demographic and clinical data from the participants. A total of 425 stool samples were collected from suspected children (aged 3-10 years) in different hospitals and villages. The initial screening was performed with modified Ziehl Neelsen (mZN) staining technique followed by polymerase chain reaction (PCR). Several potential risk factors were also assessed through the obtained information from suspected individuals. Out of all 425 collected samples, 127 were observed positive by mZN with a prevalence of 29.88% (127/425). The 127 mZN positive samples together with 50 mZN negative samples were processed for molecular analysis through PCR assay. Among them, 71 out of 127 mZN positive samples and 4 out of 50 mZN negative samples were found positive by PCR. The molecular analysis showed that Cryptosporidium parvum was the main cause of infection in children. The results revealed that individuals exposed to diarrhea were more likely to be infected with Cryptosporidium infection while several environmental factors may also play a key role in spreading of this parasite. The current high prevalence of Cryptosporidium infection may be due to the lack of awareness and routine based testing in identification of this parasite in District Buner. Further studies are required to determine the importance of Cryptosporidium infection in this area as well as across the country and to find out the possible risk factors that may be associated with the occurrence of this protozoan. There is, however, an urgent need for laboratory-based observational studies to develop a more dynamic estimate of the cryptosporidial disease burden in the region.