Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,289
result(s) for
"Anode effect"
Sort by:
A study of the passivating fluorocarbon(CFx) film during electrochemical formation/co-evolution of CF4 in aluminum electrolysis
2024
In aluminum electrolysis cells, the emissions of perfluorocarbons (PFCs) are not only associated with the high-voltage anode effect (cell voltage > 8 V), but continuous emissions of PFCs have also been detected during cell voltage below 8 V, especially in high-amperage prebake cells. These PFCs are referred to as low-voltage anode effect PFCs (LVAE-PFCs). In this study, the influence of current density on the formation of fluorocarbon (CF
x
) film was investigated on an industrial carbon anode with a bottom area of 50 cm
2
in a high-temperature see-through aluminum electrolysis cell operating at 940 °C. The formation of CF
x
films on localized areas of the anode under normal electrolysis conditions was confirmed through observations. The quantity of peeled CF
x
films and the value of the back electromotive force gradually increase with increasing current density. Simultaneously, the thermal decomposition of the CF
x
films results in the generation of PFCs. Under conditions of sufficient alumina concentration, the peeling of the CF
x
films contributes to a reduction in the cell voltage. X-ray photoelectron spectroscopy analysis revealed that regions with high current density on the carbon anode provide favorable conditions for the formation of CF
x
components with high resistance characteristics, inevitably leading to an increase in cell voltage.
Journal Article
A dynamic stability design strategy for lithium metal solid state batteries
2021
A solid-state electrolyte is expected to suppress lithium (Li) dendrite penetration with high mechanical strength
1
–
4
. However, in practice it still remains challenging to realise a lithium metal anode for batteries, because micrometre- or submicrometre-sized cracks in ceramic pellets can frequently be generated during battery assembly or long-time cycling
3
,
5
. Once cracks form, lithium dendrite penetration is inevitable
6
,
7
. Here we describe a solid-state battery design with a hierarchy of interface stabilities (to lithium metal responses), to achieve an ultrahigh current density with no lithium dendrite penetration. Our multilayer design has the structure of a less-stable electrolyte sandwiched between more-stable solid electrolytes, which prevents any lithium dendrite growth through well localized decompositions in the less stable electrolyte layer. A mechanism analogous to the expansion screw effect is proposed, whereby any cracks are filled by dynamically generated decompositions that are also well constrained, probably by the ‘anchoring’ effect the decompositions induce. The cycling performance of the lithium metal anode paired with a LiNi
0.8
Mn
0.1
Co
0.1
O
2
cathode is very stable, with an 82 per cent capacity retention after 10,000 cycles at a 20C rate (8.6 milliamps per centimetre squared) and 81.3 per cent capacity retention after 2,000 cycles at a 1.5C rate (0.64 milliamps per centimetre squared). Our design also enables a specific power of 110.6 kilowatts per kilogram and specific energy up to 631.1 watt hours per kilogram at the micrometre-sized cathode material level.
A multi-layered electrolyte, in which a less stable electrolyte is sandwiched between two electrolyte layers that are more stable, can inhibit the growth of lithium dendrites in highly pressurized solid-state lithium metal batteries.
Journal Article
Interfacial Engineering Strategy for High-Performance Zn Metal Anodes
2022
HighlightsThe interfacial engineering strategies of surface and electrolyte modifications for high-performance Zn metal anodes are reviewed.The reaction mechanisms for inhibiting dendrite growth and side reactions in interface engineering are systematically summarized.An outlook on future reference directions for new interface strategies to advance this field is provided.Due to their high safety and low cost, rechargeable aqueous Zn-ion batteries (RAZIBs) have been receiving increased attention and are expected to be the next generation of energy storage systems. However, metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions, which severely hinder the further development of RAZIBs. Researchers have attempted to design high-performance Zn anodes by interfacial engineering, including surface modification and the addition of electrolyte additives, to stabilize Zn anodes. The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions, which effectively improves the cycling stability of the Zn anode. This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions. In addition, the research progress of interfacial engineering strategies for RAZIBs is summarized and classified. Finally, prospects and suggestions are provided for the design of highly reversible Zn anodes.
Journal Article
Issues and solutions toward zinc anode in aqueous zinc‐ion batteries: A mini review
2020
Aqueous zinc‐ion batteries (ZIBs) have been intensively investigated as potential energy storage devices on account of their low cost, environmental benignity, and intrinsically safe merits. With the exploitation of high‐performance cathode materials, electrolyte systems, and in‐depth mechanism investigation, the electrochemical performances of ZIBs have been greatly enhanced. However, there are still some challenges that need to be overcome before its commercialization. Among them, the obstinate dendrites, corrosion, and hydrogen evolution reaction (HER) on Zn anodes are critical issues that severely limit the practical applications of ZIBs. To address these issues, various strategies have been proposed, and tremendous progress has been achieved in the past few years. In this article, we analyze the origins and effects of the dendrites, corrosion, and HER on Zn anodes in neutral and mildly acid aqueous solutions at first. And then, a scientific understanding of the fundamental design principles and strategies to suppress these problems are emphasized. Apart from these, this article also puts forward some requirements for the practical applications of Zn anodes as well as several cost‐effective‐modifying strategies. Finally, perspectives on the future development of Zn anodes in aqueous solutions are also briefly anticipated. This article provides pertinent insights into the challenges on anodes for the development of high‐performance ZIBs, which will greatly contribute to their practical applications. This article summarizes the causes and effects of Zn dendrites, corrosion, and hydrogen evolution reaction (HER) in aqueous zinc‐ion batteries (ZIBs). Moreover, recent advances in tackling these three issues toward zinc anode are systematically analyzed. Finally, several perspectives for the overall performance of zinc anodes have been put forward.
Journal Article
Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information
2021
Anode heel effects are known to cause non-uniform image quality, but no method has been proposed to evaluate the non-uniform image quality caused by the heel effect. Therefore, the purpose of this study was to evaluate non-uniform image quality in digital radiographs using a novel circular step-wedge (CSW) phantom and normalized mutual information (nMI). All X-ray images were acquired from a digital radiography system equipped with a CsI flat panel detector. A new acrylic CSW phantom was imaged ten times at various kVp and mAs to evaluate overall and non-uniform image quality with nMI metrics. For comparisons, a conventional contrast-detail resolution phantom was imaged ten times at identical exposure parameters to evaluate overall image quality with visible ratio (VR) metrics, and the phantom was placed in different orientations to assess non-uniform image quality. In addition, heel effect correction (HEC) was executed to elucidate the impact of its effect on image quality. The results showed that both nMI and VR metrics significantly changed with kVp and mAs, and had a significant positive correlation. The positive correlation is suggestive that the nMI metrics have a similar performance to the VR metrics in assessing the overall image quality of digital radiographs. The nMI metrics significantly changed with orientations and also significantly increased after HEC in the anode direction. However, the VR metrics did not change significantly with orientations or with HEC. The results indicate that the nMI metrics were more sensitive than the VR metrics with regards to non-uniform image quality caused by the anode heel effect. In conclusion, the proposed nMI metrics with a CSW phantom outperformed the conventional VR metrics in detecting non-uniform image quality caused by the heel effect, and thus are suitable for quantitatively evaluating non-uniform image quality in digital radiographs with and without HEC.
Journal Article
Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities
2020
Limited by the size of microelectronics, as well as the space of electrical vehicles, there are tremendous demands for lithium-ion batteries with high volumetric energy densities. Current lithium-ion batteries, however, adopt graphite-based anodes with low tap density and gravimetric capacity, resulting in poor volumetric performance metric. Here, by encapsulating nanoparticles of metallic tin in mechanically robust graphene tubes, we show tin anodes with high volumetric and gravimetric capacities, high rate performance, and long cycling life. Pairing with a commercial cathode material LiNi
0.6
Mn
0.2
Co
0.2
O
2
, full cells exhibit a gravimetric and volumetric energy density of 590 W h Kg
−1
and 1,252 W h L
−1
, respectively, the latter of which doubles that of the cell based on graphite anodes. This work provides an effective route towards lithium-ion batteries with high energy density for a broad range of applications.
Here the authors report a tin anode design by encapsulating tin nanoparticles in graphene tubes. The design exhibits high capacity, good rate performance and cycling stability. Pairing with NMC, the full cell delivers a volumetric energy density twice as high as that for the commercial cell.
Journal Article
Nano and Battery Anode: A Review
2021
Improving the anode properties, including increasing its capacity, is one of the basic necessities to improve battery performance. In this paper, high-capacity anodes with alloy performance are introduced, then the problem of fragmentation of these anodes and its effect during the cyclic life is stated. Then, the effect of reducing the size to the nanoscale in solving the problem of fragmentation and improving the properties is discussed, and finally the various forms of nanomaterials are examined. In this paper, electrode reduction in the anode, which is a nanoscale phenomenon, is described. The negative effects of this phenomenon on alloy anodes are expressed and how to eliminate these negative effects by preparing suitable nanostructures will be discussed. Also, the anodes of the titanium oxide family are introduced and the effects of Nano on the performance improvement of these anodes are expressed, and finally, the quasi-capacitive behavior, which is specific to Nano, will be introduced. Finally, the third type of anodes, exchange anodes, is introduced and their function is expressed. The effect of Nano on the reversibility of these anodes is mentioned. The advantages of nanotechnology for these electrodes are described. In this paper, it is found that nanotechnology, in addition to the common effects such as reducing the penetration distance and modulating the stress, also creates other interesting effects in this type of anode, such as capacitive quasi-capacitance, changing storage mechanism and lower volume change.
Journal Article
Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery
2021
The interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g
−1
(based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.
Lithium-sulfur batteries suffer from the shuttle effect of lithium polysulfides and interfacial instability of the lithium metal anode. Here, the authors use 1,3,5-benzenetrithiol as an electrolyte additive to protect sulfur cathode and lithium metal anode.
Journal Article
Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy
2020
Metallic lithium anodes are highly promising for revolutionizing current rechargeable batteries because of their ultrahigh energy density. However, the application of lithium metal batteries is considerably impeded by lithium dendrite growth. Here, a biomacromolecule matrix obtained from the natural membrane of eggshell is introduced to control lithium growth and the mechanism is motivated by how living organisms regulate the orientation of inorganic crystals in biomineralization. Specifically, cryo-electron microscopy is utilized to probe the structure of lithium at the atomic level. The dendrites growing along the preferred < 111 > crystallographic orientation are greatly suppressed in the presence of the biomacromolecule. Furthermore, the naturally soluble chemical species in the biomacromolecules can participate in the formation of solid electrolyte interphase upon cycling, thus effectively homogenizing the lithium deposition. The lithium anodes employing bioinspired design exhibit enhanced cycling capability. This work sheds light on identifying substantial challenges in lithium anodes for developing advanced batteries.
Inspired by the role of proteins in regulating eggshell mineralization, here Tao, Liu and colleagues apply trifluoroethanol modified eggshell membrane to combat lithium dendrite. Cryo-electron microscopy reveals that the growth along the most favored crystallographic direction is suppressed.
Journal Article
Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries
by
Hou-Zheng, Xiang
,
Zhang, Hui
,
Cui-Hong, Zheng
in
Aluminum
,
Anode effect
,
Combustion synthesis
2021
Owing to their entropy stabilization and multi-principal effect, transition-metal-based high-entropy oxides are attracting extensive attention as an effective family of anode materials for lithium ion batteries (LIBs). Herein, spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ HEO nanocrystalline powder with high concentration of oxygen vacancies is successfully prepared by the method of solution combustion synthesis (SCS), and explored as a novel anode active material for LIBs. As compared to (CoCrFeMnNi)0.6O4-δ, the inactive Al3+-doped (Al0.2CoCrFeMnNi)0.58O4-δ anode provides more than twice the reversible specific capacity of 554 mAh g−1 after 500 cycles at a specific current of 200 mA g−1, accompanied with good rate capability (634 mAh g−1 even at 3 A g−1) and cycling performance. The enhanced electrochemical properties can be attributed to that inactive Al3+-doping resulted into the more space for Li+ intercalation and deintercalation, enhanced structural stability, and the improved electronic conductivity and Li+ diffusivity.
Journal Article