Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,916 result(s) for "Antelopes"
Sort by:
From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales
Understanding animal movement is a key challenge in ecology and conservation biology. Relocation data often represent a complex mixture of different movement behaviors, and reliably decomposing this mix into its component parts is an unresolved problem in movement ecology. Traditional approaches, such as composite random walk models, require that the timescales characterizing the movement are all similar to the usually arbitrary data-sampling rate. Movement behaviors such as long-distance searching and fine-scale foraging, however, are often intermixed but operate on vastly different spatial and temporal scales. An approach that integrates the full sweep of movement behaviors across scales is currently lacking. Here we show how the semivariance function (SVF) of a stochastic movement process can both identify multiple movement modes and solve the sampling rate problem. We express a broad range of continuous-space, continuous-time stochastic movement models in terms of their SVFs, connect them to relocation data via variogram regression, and compare them using standard model selection techniques. We illustrate our approach using Mongolian gazelle relocation data and show that gazelle movement is characterized by ballistic foraging movements on a 6-h timescale, fast diffusive searching with a 10-week timescale, and asymptotic diffusion over longer timescales.
Larger mammals have longer faces because of size-related constraints on skull form
Facial length is one of the best known examples of heterochrony. Changes in the timing of facial growth have been invoked as a mechanism for the origin of our short human face from our long-faced extinct relatives. Such heterochronic changes arguably permit great evolutionary flexibility, allowing the mammalian face to be remodelled simply by modifying postnatal growth. Here we present new data that show that this mechanism is significantly constrained by adult size. Small mammals are more brachycephalic (short faced) than large ones, despite the putative independence between adult size and facial length. This pattern holds across four phenotypic lineages: antelopes, fruit bats, tree squirrels and mongooses. Despite the apparent flexibility of facial heterochrony, growth of the face is linked to absolute size and introduces what seems to be a loose but clade-wide mammalian constraint on head shape. Size-related craniofacial ontogenetic shape variation is known to occur in mammals: large individuals tend to be long-faced and small individuals have large braincases. Carnini and Polly now demonstrate that cranial size and shape co-vary in adults across a range of mammalian groups.
Diversity and Paleodemography of the Addax (Addax nasomaculatus), a Saharan Antelope on the Verge of Extinction
Since the 19th century, the addax (Addax nasomaculatus) has lost approximately 99% of its former range. Along with its close relatives, the blue antelope (Hippotragus leucophaeus) and the scimitar-horned oryx (Oryx dammah), the addax may be the third large African mammal species to go extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered species remains virtually unknown. To gain insight into the population history of the addax, we used hybridization capture to generate ten complete mitochondrial genomes from historical samples and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent common ancestor ~32 kya (95% CI 11–58 kya) and weak phylogeographic structure, indicating that the addax likely existed as a highly mobile, panmictic population across its Sahelo–Saharan range in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma, with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the human disturbances of the last few centuries.
Body size and the division of niche space: food and predation differentially shape the distribution of Serengeti grazers
1. Theory predicts that small grazers are regulated by the digestive quality of grass, while large grazers extract sufficient nutrients from low-quality forage and are regulated by its abundance instead. In addition, predation potentially affects populations of small grazers more than large grazers, because predators have difficulty capturing and handling large prey. 2. We analyse the spatial distribution of five grazer species of different body size in relation to gradients of food availability and prédation risk. Specifically, we investigate how the quality of grass, the abundance of grass biomass and the associated risks of predation affect the habitat use of small, intermediate and large savanna grazers at a landscape level. 3. Resource selection functions of five mammalian grazer species surveyed over a 21-year period in Serengeti are calculated using logistic regressions. Variables included in the analyses are grass nitrogen, rainfall, topographic wetness index, woody cover, drainage lines, landscape curvature, water and human habitation. Structural equation modelling (SEM) is used to aggregate predictor variables into 'composites' representing food quality, food abundance and prédation risk. Subsequently, SEM is used to investigate species' habitat use, defined as their recurrence in 5 × 5 km cells across repeated censuses. 4. The distribution of small grazers is constrained by prédation and food quality, whereas the distribution of large grazers is relatively unconstrained. The distribution of the largest grazer (African buffalo) is primarily associated with forage abundance but not prédation risk, while the distributions of the smallest grazers (Thomson's gazelle and Grant's gazelle) are associated with high grass quality and negatively with the risk of predation. The distributions of intermediate sized grazers (Coke's hartebeest and topi) suggest they optimize access to grass biomass of sufficient quality in relatively predator-safe areas. 5. The results illustrate how top-down (vegetation-mediated predation risk) and bottom-up factors (biomass and nutrient content of vegetation) predictably contribute to the division of niche space for herbivores that vary in body size. Furthermore, diverse grazing assemblages are composed of herbivores of many body sizes (rather than similar body sizes), because these herbivores best exploit the resources of different habitat types.
Some gastrointestinal nematodes and ixodid ticks shared by several wildlife species in the Kruger National Park, South Africa
Parasite surveys were conducted for 1–2 years in the Kruger National Park (KNP), South Africa on blue wildebeest, impalas, greater kudus, common warthogs and scrub hares. The host associations of some of the gastrointestinal nematode species infecting ≥60% of at least one of the five host species, were determined. These were Agriostomum gorgonis, Cooperia acutispiculum, Cooperia connochaeti, Cooperia hungi, Cooperia neitzi, Cooperioides hamiltoni, Gaigeria pachyscelis, Haemonchus bedfordi, Haemonchus krugeri, Haemonchus vegliai, Impalaia tuberculata, Longistrongylus sabie, Strongyloides papillosus, Trichostrongylus deflexus and Trichostrongylus thomasi. Although the prevalence of Trichostrongylus falculatus did not exceed 50% in any host species, it was present in all five hosts. Nematodes in the KNP range from those exhibiting strict host associations to generalists. Nematode-host associations may be determined by host feeding patterns and habitat use. Eight ixodid tick species were commonly collected from the same animals and in 2–3 year long surveys from plains zebras and helmeted guinea fowls: Amblyomma hebraeum, Amblyomma marmoreum, Hyalomma truncatum, Rhipicephalus appendiculatus, Rhipicephalus decoloratus, Rhipicephalus evertsi evertsi, Rhipicephalus simus and Rhipicephalus zambeziensis. Host specificity was less pronounced in ixodid tick species than in nematodes and the immature stages of five tick species infested all host species examined.
Browsing and fire interact to suppress tree density in an African savanna
Disturbances from fire and herbivory strongly affect savanna vegetation dynamics. In some savannas, fire especially may be instrumental in preserving the coexistence of trees and grasses. The role of herbivory by large mammals is less clear; herbivory has been shown variously to promote and to suppress tree establishment. Here we ask how interactions between herbivory and fire act to shape savanna vegetation dynamics via their effects on tree populations in Hluhluwe iMfolozi Park in KwaZulu Natal, South Africa, a savanna with a full complement of native large mammals. We examined the effects of herbivore exclusion on tree growth, mortality, and seedling establishment from 2000 to 2007 at 10 sites located in areas of low and high herbivore pressure throughout the park. Results were analyzed statistically and using Leslie matrix models of population dynamics. Herbivory and fire acted primarily to suppress sapling growth rather than on sapling mortality or seedling establishment. This indicates that browsing, like fire, suppresses tree density by imposing a demographic bottleneck on the maturation of saplings to adults. Model results suggest that, while browsing and fire each alone impacted growth, a combination of browsing and fire had much greater effects on tree density. Only fire and browsing together were able to prevent increases in tree density. These results suggest that, while soil resources, including nutrients and moisture, are probably instrumental in determining tree growth rates, disturbances from fire and herbivory may be instrumental in limiting tree cover and facilitating the coexistence of trees and grasses in savannas.
Increased tolerance to humans among disturbed wildlife
Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. Some animal species tolerate the presence of humans better than others. In a meta-analysis, Samia et al . find that populations of wildlife exposed to greater levels of human disturbance are more tolerant than undisturbed populations, with large birds in urbanized areas showing the highest levels of tolerance.