Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
376
result(s) for
"Antenna Design, Modeling and Measurements"
Sort by:
A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques
by
Verma, Ramesh Kumar
,
Singh, Rakesh Kumar
,
Mishra, Brijesh
in
Antenna Design, Modeling and Measurements
,
Antenna radiation patterns
,
Antennas
2022
This paper presents a comprehensive review of symmetrically shaped antennas in terms of antenna size, dielectric materials, resonating band, peak gain, radiation pattern, simulating tools, and their applications. In this article, flower shape, leaf shape, tree shape, fan shape, Pi shape, butterfly shape, bat shape, wearable, multiband, monopole, and fractal antennas are discussed. Further, a survey of previously reported bandwidth enhancement techniques of microstrip patch antenna like introduction of thick and lower permittivity substrate, multilayer substrate, parasitic elements, slots and notches, shorting wall, shorting pin, defected ground structure, metamaterial-based split ring resonator structure, fractal geometry, and composite right-hand/left-handed transmission line approach is presented. The physics of these techniques has been discussed in detail which is supported by circuit theory model approach.
Journal Article
Asymmetrical fed Calendula flower-shaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance
by
Addepalli, Tathababu
,
Vidyavathi, T.
,
Kumar, D.
in
Antenna design
,
Antenna Design, Modeling and Measurements
,
Antennas
2023
This research reports a four-port multiple-input-multiple-output (MIMO) antenna designed for 5G-NR band applications including n77: 3.30–4.20 GHz, n78: 3.30–3.80 GHz, and n79: 4.40–5.00 GHz. The proposed design is analyzed in two parts, one single-element asymmetrical fed Calendula flower-shaped antenna and the other four-port modified MIMO antenna with the connected ground. The evolution of the MIMO antenna is studied based on the characteristics and optimized single-element antenna. The measured 5G-NR bandwidth offers a very high matching of impedance for MIMO configuration and higher isolation in the same band. The MIMO antenna offers an average peak gain of 3.51 dBi with a radiation efficiency of more than 90%. The radiation patterns plotted at 3.51, 4.00, 4.50, and 5.00 GHz match with almost omni-directional and dipole patterns in H- and E-radiating planes respectively. The MIMO antenna also records good diversity performance (ECC, DG, CCL, MEG, and TARC) in n77, n78, and n79 5G bands.
Journal Article
Design and analysis of wideband MIMO antenna arrays for 5G smartphone application
by
Sghaier, Nizar
,
Latrach, Lassaad
in
5G mobile communication
,
Antenna arrays
,
Antenna Design, Modeling and Measurements
2022
A new wideband multiple-input/multiple-output (MIMO) antenna system able to operate in a frequency band ranging between 3.3 and 7.1 GHz is proposed for fifth-generation (5G) new radio applications for future smartphones. The design structure contains four pairs of compact microstrip-fed slot antennas, located at the corners of an FR-4 printed circuit board. Each pair of antennas consists of a radiator with two concentric annular slots, fed by two L-shaped microstrip-feeding lines and provides polarization and radiation pattern diversity function due to the orthogonal placement of their feed-line. In order to reduce the mutual coupling characteristic, we have inserted a rectangular slot under each microstrip feed-line. Besides, we have coupled and linked the two rings by a small gap to combine and move the resonant modes so as to achieve wideband coverage. The measured and simulated results show that the proposed design achieves the desired performance, such as isolation >12 dB, a total efficiency >48%, and an envelope correlation coefficient <0.07. In addition, the radiation pattern, the total efficiency, the realized gain, and the channel capacity are also studied. According to the reached results, the proposed MIMO antenna may be a suitable application-oriented design for 5G mobile communication.
Journal Article
Survey of various bandwidth enhancement techniques used for 5G antennas
by
Rawat, Sanyog
,
Nahar, Tapan
in
Antenna design
,
Antenna Design, Modeling and Measurements
,
Antennas
2022
Fifth-generation technology is not fully deployed in the world wireless communication till date. Millimeter-wave (mm-wave) band needs to be used due to plenty of available bandwidth and for achieving the goals of 5G such as greater data rate, ultra-high-speed video broadcasting, low latency services, and many more. Wideband antenna is required for 5G applications to access the high speed, low latency Internet services, and ultra-high-definition video streaming. Various bandwidth enhancement techniques have been reported by the researchers for microstrip antennas operating at microwave bands. High link losses, small wavelength, limited coverage, and environmental losses are the major challenges of mm-wave band. To mitigate these issues and satisfy 5G standard, an antenna with wide bandwidth, high gain, narrow steerable beam, high isolation, low side lobe levels, and multiband characteristics is required. Modifications in conventional antenna design techniques are required to achieve broader bandwidth along with stable radiation characteristics, improved gain, and low side lobe levels at mm-wave frequencies. This paper presents the survey of various bandwidth enhancement techniques which has been used in the 5G antennas designed by researchers. Reviews of some wideband 5G antennas with their performance comparisons are also discussed.
Journal Article
A flexible broadband antenna for IoT applications
by
Atanasova, Gabriela
,
Dishovsky, Nikolay
,
Al-Ghamdi, Ahmed
in
Antenna Design, Modeling and Measurements
,
Antenna radiation patterns
,
Antennas
2020
A flexible broadband antenna with high radiation efficiency for the Internet of Things (IoT) applications is presented. The design is based on a U-shaped and a triangular-shaped radiator with two tuning stubs. A 50 Ω coplanar waveguide (CPW) transmission line is employed to feed the antenna. The proposed antenna is fabricated on a flexible substrate from a composite synthesized by mixing natural rubber with SiO2 as a filler. The radiating elements, along with the CPW, are built using a highly conductive woven fabric. Results show that the antenna has a simulated and measured impedance bandwidth of 0.856–2.513 GHz and covers the most commonly used wireless communication standards and technologies for IoT applications. The radiation efficiency of the antenna reaches over 75% throughout the operating frequency band with satisfactory radiation patterns and gain. The flexible antenna was also tested under bending conditions. The presented results demonstrate that bending has a minor effect on the antenna performance within the target frequency range. The measured results show a good agreement with simulations.
Journal Article
Modified ground and slotted MIMO antennas for 5G sub-6 GHz frequency bands
by
Agrawal, Neetu
,
Gupta, Manish
,
Chouhan, Sanjay
in
Antenna Design, Modeling and Measurements
,
Antennas
,
Bandwidths
2023
Multiple input multiple output (MIMO) systems, which use multiple antennas to deliver faster data rates, are one of the promising methods in 5G services. 5G is a popular issue among the world's main telecom firms currently. The sub-6 GHz band for 5G applications in various countries lies between 3 and 5 GHz. The sub-6 GHz 5G bands are 3.4–3.8 GHz in Europe, 3.1–3.55 GHz in the USA, and 3.3–3.6 GHz and 4.8–4.99 GHz in China. This paper presents a two-element slotted octagon-shaped antenna operating in the sub-6 GHz band (3.1–4.5 GHz) for 5G applications. A T-formed isolation structure is placed at a ground plane to minimize mutual coupling between MIMO antennas. The proposed MIMO antenna has physical dimensions of 55 × 38 mm2 and an envelope correlation coefficient or correlation of 0.0004 over the entire operating band. The antenna operates at 3.6 GHz, with a return loss of 40.8 dB at the resonance. An antenna prototype has been investigated and proven to be of excellent quality in terms of performance like isolation >20 dB, efficiency >80%, and mean effective gain <−3 dB over the full operating band.
Journal Article
Dielectric resonator-based two-port filtennas with pattern and space diversity for 5G IoT applications
by
Sharma, Darshika
,
Sharma, Anand
,
Katiyar, Rishika
in
5G mobile communication
,
Accountability
,
Antenna Design, Modeling and Measurements
2023
This paper describes a multiple-input multiple-output (MIMO) antenna for low millimeter (mm)-wave applications based on dielectric resonators. This is the first time that a filtering response is used in conjunction with an MIMO antenna operating at a low mm-wave frequency. The antenna is simulated using an asymmetrical U-shaped aperture and a microstrip line feed. The suggested filtenna has two distinguishing characteristics: (i) the diversity parameters of the proposed MIMO are increased by including pattern and spatial diversity, and (ii) the proposed feed mechanism of a dielectric resonator provides the filtering response. Between the two ports, a metallic plate tilts the radiation pattern by 45°. The anti-parallel locations of the ports increase the isolation value by >30 dB. To validate the performance of the suggested antenna, the proposed filtenna was built and confirmed. The proposed antenna operates between the frequencies 27.9 and 28.5 GHz. Within the operating frequency range, the observed gain is ~4.5 dBi. On the contrary, the gain suppression level beyond the operational frequency range is ~15 dB. The stable radiation properties and high diversity parameter values of the suggested filtenna make it an effective solution for 5G Internet of Things sensing applications.
Journal Article
A 5G rotated frame radiator for ultra wideband microwave communication
by
Varun Yadav, Manish
,
Sanghi, Vaibhav
,
Baudha, Sudeep
in
Antenna design
,
Antenna Design, Modeling and Measurements
,
Antennas
2023
A 5G rotated frame radiator for multiple applications is presented in the following paper. The presented geometry is capable of radiating the large frequency band from 2.91 to 12.17 GHz, which covers the 5G-(I) sub-6 GHz band, X-band communication with high efficiency. The impedance bandwidth of the radiator is 128%, with an electrical size of 0.24 λ × 0.24 λ × 0.15 λ in lambda. The antenna is simulated with an FR4 substrate using CST Simulator. 06-stages evolution process is also investigated by simulations, and corresponding S-parameter results are presented. Antenna's design comprises a patch in a rotated square fractal-like frame fed by a microstrip line. The proposed structure also demonstrates stable radiation patterns across the operating bandwidth. The proposed radiator has a high gain of 3.8 dBi, and an efficiency of 85%, which claimed that UWB range of the designed antenna. Therefore, it is useful for 5G-(I) sub-6 GHz band, X-band applications, including mobile, radar, and satellite microwave communication.
Journal Article
Design of dual band-notched UWB hexagonal printed microstrip antenna
by
Maity, Smarajit
,
Sarkar, Partha Pratim
,
Mukherjee, Surajit
in
Antenna Design, Modeling and Measurements
,
Antennas
,
Bandwidths
2023
This article presents the design and performance analysis of a printed microstrip ultra-wideband (UWB) antenna consisting of the slots in the ground plane and radiating patch. A meandered S-shaped slot has been introduced on the patch and an inverted U-shaped slot has been incorporated in the ground plane to realize the band-notch effect for WiMAX (3.2–3.8 GHz) and WLAN (5.1–5.8 GHz) bands respectively. The total dimension of the proposed design is 44 × 44 mm2. The fabricated antenna exhibits wide impedance bandwidth of 10 GHz (2.4–12.4 GHz), i.e., 135% of center frequency. The design prototype is fabricated, and the measured results have good agreement with simulated values. The effects of the slots have been analyzed by simulated surface current distribution. The designed antenna shows almost omnidirectional radiation patter and stable gain. The proposed hexagonal antenna may be suitable for UWB applications removing WiMAX and WLAN bands.
Journal Article
Selectivity improvement of interdigital filtering-antenna using different orders for 5 G application
by
Cahyasiwi, Dwi Astuti
,
Rahardjo, Eko Tjipto
,
Roza, Emilia
in
Antenna design
,
Antenna Design, Modeling and Measurements
,
Antennas
2023
In this paper, filter and antenna integration is studied to produce a compact device for wireless front-end equipment. Filtering antennas are advanced due to their selectivity performance, represented by a flat gain response. Two filtering antennas are proposed to improve the selectivity using different orders. The first antenna is based on second-order filter and the other on third-order filter. Both antennas are designed to operate at 4.65 GHz for mid-band 5 G application with a bandwidth of 6.45%. The first antenna integrates a rectangular radiator and an interdigital resonator based on second-order filter. It obtained a bandwidth impedance of −10 dB for 300 MHz and a maximum gain of 6.48 dBi. Meanwhile, the second design consists of a rectangular radiator and two interdigital resonators based on third-order filter as the feedline. Having the same bandwidth as the first design, the second design achieved a flat gain of 6.37 dBi in the operational bandwidth. The second antenna design showed better selectivity with sharper gain than the first design. The two antennas were fabricated and measured for validation. The simulation and measurement results showed good agreement.
Journal Article