Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,992 result(s) for "Anti-Infective Agents - pharmacology"
Sort by:
Chemical synthesis of nucleoside analogues
Compiles current tested and proven approaches to synthesize novel nucleoside analogues Featuring contributions from leading synthetic chemists from around the world, this book brings together and describes tested and proven approaches for the chemical synthesis of common families of nucleoside analogues. Readers will learn to create new nucleoside analogues with desired therapeutic properties by using a variety of methods to chemically modify natural nucleosides, including: Changes to the heterocyclic base Modification of substituents at the sugar ring Replacement of the furanose ring by a different carbo- or heterocyclic ring Introduction of conformational restrictions Synthesis of enantiomers Preparation of hydrolitically stable C-nucleosides Chemical Synthesis of Nucleoside Analogues covers all the major classes of nucleosides, including pronucleotides, C-nucleosides, carbanucleosides, and PNA monomers which have shown great promise as starting points for the synthesis of nucleoside analogues. The book also includes experimental procedures for key reactions related to the synthesis of nucleoside analogues, providing a valuable tool for the preparation of a number of different compounds. Throughout the book, chemical schemes and figures help readers better understand the chemical structures of nucleoside analogues and the methods used to synthesize them. Extensive references serve as a gateway to the growing body of original research studies and reviews in the field. Synthetically modified nucleosides have proven their value as therapeutic drugs, in particular as antiviral and antitumor agents. However, many of these nucleoside analogues have undesirable side effects. With Chemical Synthesis of Nucleoside Analogues as their guide, researchers have a new tool for synthesizing a new generation of nucleoside analogues that can be used as therapeutic drugs with fewer unwanted side effects.
Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study
Purpose The recent increase in drug-resistant micro-organisms complicates the management of hospital-acquired bloodstream infections (HA-BSIs). We investigated the epidemiology of HA-BSI and evaluated the impact of drug resistance on outcomes of critically ill patients, controlling for patient characteristics and infection management. Methods A prospective, multicentre non-representative cohort study was conducted in 162 intensive care units (ICUs) in 24 countries. Results We included 1,156 patients [mean ± standard deviation (SD) age, 59.5 ± 17.7 years; 65 % males; mean ± SD Simplified Acute Physiology Score (SAPS) II score, 50 ± 17] with HA-BSIs, of which 76 % were ICU-acquired. Median time to diagnosis was 14 [interquartile range (IQR), 7–26] days after hospital admission. Polymicrobial infections accounted for 12 % of cases. Among monomicrobial infections, 58.3 % were gram-negative, 32.8 % gram-positive, 7.8 % fungal and 1.2 % due to strict anaerobes. Overall, 629 (47.8 %) isolates were multidrug-resistant (MDR), including 270 (20.5 %) extensively resistant (XDR), and 5 (0.4 %) pan-drug-resistant (PDR). Micro-organism distribution and MDR occurrence varied significantly ( p  < 0.001) by country. The 28-day all-cause fatality rate was 36 %. In the multivariable model including micro-organism, patient and centre variables, independent predictors of 28-day mortality included MDR isolate [odds ratio (OR), 1.49; 95 % confidence interval (95 %CI), 1.07–2.06], uncontrolled infection source (OR, 5.86; 95 %CI, 2.5–13.9) and timing to adequate treatment (before day 6 since blood culture collection versus never, OR, 0.38; 95 %CI, 0.23–0.63; since day 6 versus never, OR, 0.20; 95 %CI, 0.08–0.47). Conclusions MDR and XDR bacteria (especially gram-negative) are common in HA-BSIs in critically ill patients and are associated with increased 28-day mortality. Intensified efforts to prevent HA-BSIs and to optimize their management through adequate source control and antibiotic therapy are needed to improve outcomes.
Lactoferrin: Properties and Potential Uses in the Food Industry
Lactoferrin (LF) is an 80 kDa glycoprotein that contains approximately 700 amino acids and is a member of the transferrin family. The essential properties of LF, including antimicrobial, antiviral, anticancer, anti-inflammatory, antioxidant, and probiotic effects, have been studied for decades. The iron chelation activity of LF is significantly associated with its antimicrobial, anti-inflammatory, and antioxidant properties. Owing to its probiotic and prebiotic activity, LF also facilitates the growth of beneficial microorganisms and iron-defense immediate-effect properties on pathogens. Additionally, the ability to regulate cell signaling pathways and immune responses makes LF a prominent modulatory protein. These diverse characteristics of LF have gained interest in its therapeutic potential. Studies have suggested that LF could serve as an alternative source to antibiotics in severe infections and illnesses. LF has also gained interest in the food industry for its potential as an additive to fortify products such as yogurt, infant formula, and meat derivatives while also improving the shelf life of foods and providing antimicrobial and antioxidant activity. Prior to using LF in the food industry, the safety and toxicity of food processing are necessary to be investigated. These safety investigations are crucial for addressing potential harm or side effects and ensuring a healthy lifestyle. This review discusses the attributes and safety of LF, particularly its exploitation in the food industry.
The antiseptic Miramistin: a review of its comparative in vitro and clinical activity
ABSTRACT Miramistin is a topical antiseptic with broad antimicrobial action, including activity against biofilms and a clinical profile showing good tolerability. Miramistin was developed within a framework of the Soviet Union Cold War Space Program. It is available for clinical use in several prior Soviet bloc countries, but barely known outside of these countries and there is almost no mention of miramistin in the English literature. However, considering emerging antimicrobial resistance, the significant potential of miramistin justifies its re-evaluation for use in other geographical areas and conditions. The review consists of two parts: (i) a review of the existing literature on miramistin in English, Russian and Ukrainian languages; (ii) a summary of most commonly used antiseptics as comparators of miramistin. The oral LD50 was 1200 mg/kg, 1000 mg/kg and 100 g/L in rats, mice and fish, respectively. Based on the results of the review, we suggest possible applications of miramistin and potential benefits over currently used agents. Miramistin offers a novel, low toxicity antiseptic with many potential clinical uses that need better study which could address some of the negative impact of antimicrobial, antiseptic and disinfectant resistance. Miramistin is a topical antiseptic that was developed within a framework of the Soviet Union Cold War Space Program; miramistin has a broad antimicrobial action, including activity against biofilms and a clinical profile showing good tolerability.
The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu
The application of various magnetic fields for boosting the efficacy of different antimicrobial molecules or in the character of a self-reliant antimicrobial agent is considered a promising approach to eradicating bacterial biofilm-related infections. The purpose of this study was to analyze the phenomenon of increased activity of octenidine dihydrochloride-based antiseptic (OCT) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the presence of the rotating magnetic field (RMF) of two frequencies, 5 and 50 Hz, in the in vitro model consisting of stacked agar discs, placed in increasing distance from the source of the antiseptic solution. The biofilm-forming cells' viability and morphology as well as biofilm matrix structure and composition were analyzed. Also, octenidine dihydrochloride permeability through biofilm and porous agar obstacles was determined for the RMF-exposed versus unexposed settings. The exposure to RMF or OCT apart did not lead to biofilm destruction, contrary to the setting in which these two agents were used together. The performed analyses revealed the effect of RMF not only on biofilms (weakening of cell wall/membranes, disturbed morphology of cells, altered biofilm matrix porosity, and composition) but also on its milieu (altered penetrability of octenidine dihydrochloride through biofilm/agar obstacles). Our results suggest that the combination of RMF and OCT can be particularly promising in eradicating biofilms located in such areas as wound pockets, where physical obstacles limit antiseptic activity.
In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan
Wound management practices have made significant advancements, yet the search for improved antiseptics persists. In our pursuit of solutions that not only prevent infections but also address broader aspects of wound care, we investigated the impact of integrating trimethyl chitosan (TMC) into a widely used poly(vinylpyrrolidone)-iodine gel (PVP-I gel). Our study assessed the antimicrobial efficacy of the PVP gel with TMC against Escherichia coli, Staphylococcus aureus, multidrug-resistant S. aureus MRSA, and Candida albicans. Additionally, we compared hemostatic effects using a liver puncture bleeding model and evaluated wound healing through histological sections from full-thickness dermal wounds in rats. The results indicate that incorporating TMC into the commercially available PVP-I gel did not compromise its antimicrobial activity. The incorporation of TMC into the PVP-I gel markedly improves its hemostatic activity. The regular application of the PVP-I gel with TMC resulted in an increased blood vessel count in the wound bed and facilitated the development of thicker fibrous tissue with a regenerated epidermal layer. These findings suggest that TMC contributes not only to antimicrobial activity but also to the intricate processes of tissue regeneration. In conclusion, incorporating TMC proves beneficial, making it a valuable additive to commercially available antiseptic agents.
Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms
The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.
Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects
Inflammation is a natural protective mechanism that occurs when the body’s tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators’ activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer’s disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.