Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
95 result(s) for "Anti-Retroviral Agents - toxicity"
Sort by:
A year-long extended release nanoformulated cabotegravir prodrug
Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB’s effectiveness. Nanoformulated long-acting cabotegravir prodrugs are shown to be capable of extending the native drug’s antiretroviral activity, biodistribution and pharmacokinetics for up to 12 months in mice and rhesus macaques.
Sustained-release nanoART formulation for the treatment of neuroAIDS
A novel approach was developed for the coencapsulation of an anti-HIV drug (tenofovir) and a latency-breaking agent (vorinostat), using magnetically guided layer-by-layer (LbL) assembled nanocarriers for the treatment of neuroAIDS. Ultrasmall iron oxide (Fe3O4) nanoparticles (10±3 nm) were synthesized and characterized. The LbL technique was used to achieve a sustained release profile, and application of 2 bilayers ([tenofovir+dextran sulphate]2+vorinostat) to magnetic nanoparticles resulted in a 2.8 times increase in drug (tenofovir) loading and also resulted in an increase in the drug release period by 30-fold, with 100% drug release in sustained manner over a period of 5 days with the simultaneous stimulation of latent HIV expression. Nanoformulation showed a good blood-brain barrier transmigration ability (37.95%±1.5%) with good in vitro antiviral efficacy (~33% reduction of p24 level) over a period of 5 days after HIV infection in primary human astrocytes, with good cell viability (>90%). Hence, LbL arrangements of drugs on magnetic nanoparticles provides sustained release and, therefore, may improve the patient's adherence to therapy and lead to better compliance.
Dolutegravir Inhibition of Matrix Metalloproteinases Affects Mouse Neurodevelopment
Dolutegravir (DTG) is a first-line antiretroviral drug (ARV) used in combination therapy for the treatment of human immunodeficiency virus type-1 (HIV-1) infection. The drug is effective, safe, and well tolerated. Nonetheless, concerns have recently emerged for its usage in pregnant women or those of child-bearing age. Notably, DTG-based ARV regimens have been linked to birth defects seen as a consequence of periconceptional usages. To this end, uncovering an underlying mechanism for DTG-associated adverse fetal development outcomes has gained clinical and basic research interest. We now report that DTG inhibits matrix metalloproteinases (MMPs) activities that could affect fetal neurodevelopment. DTG is a broad-spectrum MMPs inhibitor and binds to Zn ++ at the enzyme’s catalytic domain. Studies performed in pregnant mice show that DTG readily reaches the fetal central nervous system during gestation and inhibits MMP activity. Postnatal screenings of brain health in mice pups identified neuroinflammation and neuronal impairment. These abnormalities persist as a consequence of in utero DTG exposure. We conclude that DTG inhibition of MMPs activities during gestation has the potential to affect prenatal and postnatal neurodevelopment.
Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system
HIV-associated neurocognitive disorder (HAND), characterized by a wide spectrum of behavioral, cognitive, and motor dysfunctions, continues to affect approximately 50 % of HIV(+) patients despite the success of combination antiretroviral drug therapy (cART) in the periphery. Of note, potential toxicity of antiretroviral drugs in the central nervous system (CNS) remains remarkably underexplored and may contribute to the persistence of HAND in the cART era. Previous studies have shown antiretrovirals (ARVs) to be neurotoxic in the peripheral nervous system in vivo and in peripheral neurons in vitro. Alterations in lipid and protein metabolism, mitochondrial damage, and oxidative stress all play a role in peripheral ARV neurotoxicity. We hypothesized that ARVs also induce cellular stresses in the CNS, ultimately leading to neuronal damage and contributing to the changing clinical and pathological picture seen in HIV-positive patients in the cART era. In this report, we show that ARVs are neurotoxic in the CNS in both pigtail macaques and rats in vivo. Furthermore, in vitro, ARVs lead to accumulation of reactive oxygen species (ROS), and ultimately induction of neuronal damage and death. Whereas ARVs alone caused some activation of the endogenous antioxidant response in vitro, augmentation of this response by a fumaric acid ester, monomethyl fumarate (MMF), blocked ARV-induced ROS generation, and neuronal damage/death. These findings implicate oxidative stress as a contributor to the underlying mechanisms of ARV-induced neurotoxicity and will provide an access point for adjunctive therapies to complement ARV therapy and reduce neurotoxicity in this patient population.
In vitro and Ex vivo Neurotoxic Effects of Efavirenz are Greater than Those of Other Common Antiretrovirals
Although antiretroviral (ARV) therapy has reduced the incidence of severe dementia associated with HIV infection, there has been a rise in milder neurocognitive complaints. Data from HIV patients taking ARVs have shown measurable neurocognitive improvements during drug cessation, suggesting a neurotoxic role of the therapy itself. Mechanisms underlying potential ARV neurotoxicity have not been thoroughly investigated, however pathologic oxidative stress and mitochondrial dysfunction have been suspected. Using DIV 16 primary rat cortical neuron culture, we tested eight ARVs from the three most commonly prescribed ARV classes: nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs) for effects on neuron viability and morphology after 24 h of drug exposure. Of the tested NRTIs, only stavudine at nearly 100 times the target plasma concentration affected neuron viability with no appreciable change in morphology. Dideoxyinosine induced dendritic simplification at 100 times target plasma concentrations, but did not adversely affect viability. The sole NtRTI, tenofovir, induced dendritic simplification at approximately 3–4 times target plasma concentration, but did not affect viability. Of the tested PIs, only amprenavir decreased neuron viability at nearly 100 times the target plasma concentration. The non-nucleoside reverse transcriptase inhibitor, efavirenz, consistently reduced viability (at 50 µM) and induced dendritic simplification (at 20 µM) nearest the target plasma concentration. Probing mitochondrial energetics of DIV16 cortical neurons after exposure to 20 µM efavirenz showed rapid diminution of mitochondrial-dependent oxygen consumption. Further, 20 µM efavirenz decreased excitability in ex vivo slice culture whereas 2 µM had no effect.
Antiretroviral Drugs Impact Autophagy with Toxic Outcomes
Antiretroviral drugs have dramatically improved the morbidity and mortality of people living with HIV (PLWH). While current antiretroviral therapy (ART) regimens are generally well-tolerated, risks for side effects and toxicity remain as PLWH must take life-long medications. Antiretroviral drugs impact autophagy, an intracellular proteolytic process that eliminates debris and foreign material, provides nutrients for metabolism, and performs quality control to maintain cell homeostasis. Toxicity and adverse events associated with antiretrovirals may be due, in part, to their impacts on autophagy. A more complete understanding of the effects on autophagy is essential for developing antiretroviral drugs with decreased off target effects, meaning those unrelated to viral suppression, to minimize toxicity for PLWH. This review summarizes the findings and highlights the gaps in our knowledge of the impacts of antiretroviral drugs on autophagy.
Effect of the Anti-retroviral Drugs Efavirenz, Tenofovir and Emtricitabine on Endothelial Cell Function: Role of PARP
Highly active anti-retroviral therapy has proved successful in reducing morbidity and mortality associated with HIV infection though it has been linked to increased risk of cardiovascular disease. To date, the direct effects of the anti-retroviral drugs Efavirenz, Tenofovir and Emtricitabine on the vasculature relaxant response have not been elucidated, which impaired may predispose individuals to cardiovascular disease. Increased cellular oxidative stress and overactivation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) have been identified as central mediators of vascular dysfunction. The aim of this study was to investigate whether exposure to Efavirenz, Tenofovir or Emtricitabine directly causes endothelial cell dysfunction via overactivation of PARP. Exposure of ex vivo male rat aortic rings or in vitro endothelial cells to Efavirenz but not Tenofovir or Emtricitabine impaired the acetylcholine-mediated relaxant response, increased cellular oxidative stress and PARP activity, decreased cell viability and increased apoptosis and necrosis. Pharmacological inhibition of PARP protected against the Efavirenz-mediated impairment of vascular relaxation and endothelial cell dysfunction. Oestrogen exposure also protected against the Efavirenz-mediated inhibition of the vascular relaxant response, cell dysfunction and increased PARP activation. In conclusion, Efavirenz directly impairs endothelial cell function, which may account for the increased risk of developing cardiovascular complications with anti-retroviral therapy.
Effect of HAART on Brain Organization and Function in HIV-Negative Subjects
HIV causes neural dysfunction in infected individuals. This dysfunction often manifests as cognitive symptoms and can be detected using neuroimaging. Highly active anti-retroviral therapy (HAART), in addition to providing virologic control, has reduced the number of profoundly impaired individuals but more mild forms of neurocognitive disorders remains prevalent. A potential confound in previous studies of HIV-associated cognitive dysfunction is that HAART may be neurotoxic. Thus, observed effects, attributed to HIV, may be in part due to HAART. It is unclear whether and to what extent current medications contribute to observed brain dysfunction. We studied changes in functional connectivity and cerebral blood flow in HIV uninfected (HIV–) individuals before and after being given two common antiretroviral medications: efavirenz and ritonavir. Neither drug was associated with significant changes in functional connectivity or cerebral blood flow. Our results suggests that previous changes in functional connectivity and cerebral blood flow in HIV infected individuals receiving HAART may largely due to the virus and remaining reservoirs and less due to toxic action of these anti-retroviral medications.
A Human Colorectal Explant Culture to Evaluate Topical Microbicides for the Prevention of HIV Infection
A human colorectal explant culture was developed to assess the safety and efficacy of topical microbicides proposed for use in humans. Because any product marketed for vaginal application will likely be used for anal intercourse, it is important to evaluate these products in colorectal explant tissue. Microbicides tested included cellulose acetate 1,2‐benzenedicarboxylate (CAP), PRO 2000, SPL7013, Vena Gel, and UC781, along with their accompanying placebos. Colorectal tissues were exposed to microbicides overnight and either fixed in formalin to evaluate toxicity by histological analysis or placed in 1‐(4,5‐dimethylthiazol‐2‐yl)‐3,5‐diphenylformazan (MTT) to quantitatively determine tissue viability. Histological analysis showed minimal toxicity for CAP, UC781, and Vena Gel. Shedding of epithelium with intact lamina propria occurred for the PRO 2000 and SPL7013 products, and shedding of epithelium and necrosis of the lamina propria occurred in explants cultured with nonoxynol‐9. The MTT assay confirmed these results for PRO 2000 (4% and 0.5%), SPL7013 (and placebo), and nonoxynol‐9 but also demonstrated reduced viability for CAP. However, viability of tissues treated with all products was not significantly different from that of the medium control. Efficacy of the microbicides was evaluated by measuring human immunodeficiency virus type 1 (HIV‐1) infection of explants in the absence or presence of products. All microbicide formulations tested were highly effective in preventing HIV infection. However, explants treated with some of the placebo formulations also exhibited a lower level of infection. Most of the products developed for vaginal application showed minimal toxicity and were effective in reducing HIV‐1 infection in colorectal tissues. These results suggest that this model is useful for evaluating the safety and efficacy of topical microbicides when used rectally.
IL-1RN and IL-1β Polymorphism and ARV-Associated Hepatotoxicity
The severity of hepatic injury depends upon cytokines. Previous studies associated IL-1RN allele 2 with IL-1β production. Hence, we examined the association of IL-1 RN and IL-1β polymorphisms with ARV-associated hepatotoxicity. Genotyping of IL-1RN (VNTR), IL-1β (-511C/T) polymorphisms was done in 162 HIV-infected patients, 34 with ARV hepatotoxicity, 128 without hepatotoxicity, and 152 healthy controls using PCR and PCR-RFLP method. The haplotypes 1T and 2C enhanced the risk for severe hepatotoxicity (OR=1.41, P=0.25; OR=1.67, P=0.31). IL-1β-511TT genotype significantly represented among tobacco using HIV-infected individuals compared to nonusers (OR=3.74, P=0.05). IL-1β-511TT genotype among alcohol users increased the risk for hepatotoxicity (OR=1.80, P=0.90). IL-1β-511CT and -511TT genotypes overrepresented in alcohol using HIV-infected individuals (OR=2.29, P=0.27; OR=2.64, P=0.19). IL-RN 2/2 and 1/3 genotypes represented higher in nevirapine using hepatotoxicity patients (OR=1.42, P=0.64, OR=8.79, P=0.09). IL-1β-511CT and -511 TT genotypes among nevirapine users enhanced the risk for severe hepatotoxicity (OR=4.29, P=0.20; OR=1.95, P=0.56). IL-1β-511CT and -511TT genotypes were overrepresented in combined nevirapine and alcohol using HIV-infected individuals as compared to nevirapine users and alcohol nonusers (OR=2.56, P=0.26; OR=2.84, P=0.24). IL-1β-511TT genotype with tobacco, alcohol, and nevirapine usage revealed a trend of risk for the development of ARV-associated hepatotoxicity and its severity.