Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
670 result(s) for "Antiandrogens"
Sort by:
Endocrinology of Transgender Medicine
Abstract Gender-affirming treatment of transgender people requires a multidisciplinary approach in which endocrinologists play a crucial role. The aim of this paper is to review recent data on hormonal treatment of this population and its effect on physical, psychological, and mental health. The Endocrine Society guidelines for transgender women include estrogens in combination with androgen-lowering medications. Feminizing treatment with estrogens and antiandrogens has desired physical changes, such as enhanced breast growth, reduction of facial and body hair growth, and fat redistribution in a female pattern. Possible side effects should be discussed with patients, particularly those at risk for venous thromboembolism. The Endocrine Society guidelines for transgender men include testosterone therapy for virilization with deepening of the voice, cessation of menses, and increases of muscle mass and facial and body hair. Owing to the lack of evidence, treatment of gender nonbinary people should be individualized. Young people may receive pubertal suspension, consisting of GnRH analogs, later followed by sex steroids. Options for fertility preservation should be discussed before any hormonal intervention. Morbidity and cardiovascular risk with cross-sex hormones is unchanged among transgender men and unclear among transgender women. Sex steroid–related malignancies can occur but are rare. Mental health problems such as depression and anxiety have been found to reduce considerably following hormonal treatment. Future studies should aim to explore the long-term outcome of hormonal treatment in transgender people and provide evidence as to the effect of gender-affirming treatment in the nonbinary population.
Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of “hinge” treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Female Pattern Hair Loss and Androgen Excess: A Report From the Multidisciplinary Androgen Excess and PCOS Committee
Abstract Objective To determine the current state of knowledge and provide evidence-based recommendations that could be valid for all specialists taking care of female pattern hair loss (FPHL), a common form of hair loss in women that is characterized by the reduction of hair density in the central area of the scalp, whereas the frontal hairline is generally well conserved. Participants An expert task force appointed by the Androgen Excess and PCOS Society, which included specialists from dermatology, endocrinology, and reproductive endocrinology. Design Levels of evidence were assessed and graded from A to D. Peer-reviewed studies evaluating FPHL published through December 2017 were reviewed. Criteria for inclusion/exclusion of the published papers were agreed on by at least two reviewers in each area and arbitrated by a third when necessary. Conclusions (i) The term “female pattern hair loss” should be used, avoiding the previous terms of alopecia or androgenetic alopecia. (ii) The two typical patterns of hair loss in FPHL are centrifugal expansion in the mid scalp, and a frontal accentuation or Christmas tree pattern. (iii) Isolated FPHL should not be considered a sign of hyperandrogenism when androgen levels are normal. (iv) The assessment of patients with FPHL is primarily clinical. (v) In all patients with FPHL, assessment of a possible androgen excess is mandatory. Measurement of vitamin D, iron, zinc, thyroid hormones, and prolactin are optional but recommended. (vi) Treatment of FPHL should start with minoxidil (5%), adding 5α-reductase inhibitors or antiandrogens when there is severe hair loss or hyperandrogenism. The AE-PCOS Society appointed an expert task force to determine the current state of knowledge and provide evidence-based recommendations regarding female pattern hair loss.
Targeting androgen receptor phase separation to overcome antiandrogen resistance
Patients with castration-resistant prostate cancer inevitably acquire resistance to antiandrogen therapies in part because of androgen receptor (AR) mutations or splice variants enabling restored AR signaling. Here we show that ligand-activated AR can form transcriptionally active condensates. Both structured and unstructured regions of AR contribute to the effective phase separation of AR and disordered N-terminal domain plays a predominant role. AR liquid–liquid phase separation behaviors faithfully report transcriptional activity and antiandrogen efficacy. Antiandrogens can promote phase separation and transcriptional activity of AR-resistant mutants in a ligand-independent manner. We conducted a phase-separation-based phenotypic screen and identified ET516 that specifically disrupts AR condensates, effectively suppresses AR transcriptional activity and inhibits the proliferation and tumor growth of prostate cancer cells expressing AR-resistant mutants. Our results demonstrate liquid–liquid phase separation as an emerging mechanism underlying drug resistance and show that targeting phase separation may provide a feasible approach for drug discovery.Phase separation of androgen receptor underlies mutation-mediated antiandrogen resistance. A phenotypic screen enabled the discovery of ET516, which disrupts androgen receptor phase separation and effectively suppresses the growth of prostate cancer.
Androgen Receptor in Breast Cancer—Clinical and Preclinical Research Insights
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy among females worldwide. The concordance of more than 70% of AR expression in primary and metastatic breast tumors implies that AR may be a new marker and a potential therapeutic target among AR-positive breast cancer patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. AR exhibits different behavior depending on the breast cancer subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since the prognostic and predictive value of AR positivity remains uncertain, it is difficult to identify and stratify patients that would benefit from AR-targeted therapies. Herein, through a review of preclinical studies, clinical studies, and clinical trials, we summarize the biology of AR, its prognostic and predictive value, as well as its therapeutic implications by breast cancer molecular subtype.
Lineage plasticity in cancer: a shared pathway of therapeutic resistance
Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer — the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives — was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.Lineage plasticity is a source of intratumoural heterogeneity and enables tumour adaptation to an adverse tumour microenvironment, eventually leading to therapeutic resistance. The authors of this Review provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours, and discuss emerging management strategies and open questions in the field.
Loss and revival of androgen receptor signaling in advanced prostate cancer
Targeting the androgen receptor (AR) signaling axis has been, over decades, the mainstay of prostate cancer therapy. More potent inhibitors of androgen synthesis and antiandrogens have emerged and have been successfully implemented in clinical practice. That said, the stronger inhibition of the AR signaling axis has led in recent years to an increase of prostate cancers that de-differentiate into AR-negative disease. Unfortunately, this process is intimately linked with a poor prognosis. Here, we review the molecular mechanisms that enable cancer cells to switch from an AR-positive to an AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence.
Toward a Lowest Effective Dose of Cyproterone Acetate in Trans Women: Results From the ENIGI Study
Abstract Context Cyproterone acetate (CPA) is a competitive inhibitor of the androgen receptor and exerts negative hypothalamic feedback. It is often used in combination with estrogens in trans women to achieve feminization. However, CPA has been associated with side effects such as changes in liver enzyme concentrations and increases in prolactin concentrations. The question is whether the testosterone-lowering effect, as well as these side effects, are dose dependent. Objective To assess the lowest effective dose of CPA in trans women to prevent side effects. Methods This longitudinal study, conducted at gender identity centers in Amsterdam, Ghent, and Florence, is part of the European Network for the Investigation of Gender Incongruence (ENIGI), a multicenter prospective cohort study. Participants were trans women (n = 882) using estrogens only or in combination with 10, 25, 50, or 100 mg CPA daily. The primary outcome measure was the concentration of testosterone at 3 and/or 12 months of hormone therapy. Results Using estrogens only (without CPA) led to testosterone concentrations of 5.5 nmol/L (standard error of the mean [SEM] 0.3). All doses of CPA resulted in testosterone concentrations below the predefined threshold of suppression of 2 nmol/L (10 mg, 0.9 nmol/L, SEM 0.7; 25 mg, 0.9 nmol/L, SEM 0.1; 50mg, 1.1 nmol/L, SEM 0.1; 100 mg, 0.9 nmol/L, SEM 0.7). Higher prolactin and lower high-density lipoprotein concentrations were observed with increasing doses of CPA. No differences in liver enzyme concentrations were found between the doses. Conclusion Compared with higher doses of CPA, a daily dose of 10 mg is equally effective in lowering testosterone concentrations in trans women, while showing fewer side effects.
Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies
Activation of androgen receptor (AR) is crucial for prostate cancer growth. Remarkably, also castration-resistant prostate cancer (CRPC) is dependent on functional AR and several mechanisms have been proposed to explain the addiction. Known causes of CRPC include gene amplification and overexpression as well as point mutations of AR. We report here the pharmacological profile of ODM-201, a novel AR inhibitor that showed significant antitumor activity and a favorable safety profile in phase 1/2 studies in men with CRPC. ODM-201 is a full and high-affinity AR antagonist that, similar to second-generation antiandrogens enzalutamide and ARN-509, inhibits testosterone-induced nuclear translocation of AR. Importantly, ODM-201 also blocks the activity of the tested mutant ARs arising in response to antiandrogen therapies, including the F876L mutation that confers resistance to enzalutamide and ARN-509. In addition, ODM-201 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a castration-resistant VCaP xenograft model. In contrast to other antiandrogens, ODM-201 shows negligible brain penetrance and does not increase serum testosterone levels in mice. In conclusion, ODM-201 is a potent AR inhibitor that overcomes resistance to AR-targeted therapies by antagonizing both overexpressed and mutated ARs. ODM-201 is currently in a phase 3 trial in CRPC.
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on
Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.