Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
535
result(s) for
"Anticancer immunity"
Sort by:
Systems Immunology Analysis Reveals an Immunomodulatory Effect of Snail-p53 Binding on Neutrophil- and T Cell-Mediated Immunity in KRAS Mutant Non-Small Cell Lung Cancer
by
Hamoudi, Rifat
,
Hamid, Qutayba
,
Bendardaf, Riyad
in
Antibodies
,
Apoptosis - genetics
,
Bcl-6 protein
2020
Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.
Journal Article
Ferroptosis, necroptosis, and pyroptosis in anticancer immunity
2020
In recent years, cancer immunotherapy based on immune checkpoint inhibitors (ICIs) has achieved considerable success in the clinic. However, ICIs are significantly limited by the fact that only one third of patients with most types of cancer respond to these agents. The induction of cell death mechanisms other than apoptosis has gradually emerged as a new cancer treatment strategy because most tumors harbor innate resistance to apoptosis. However, to date, the possibility of combining these two modalities has not been discussed systematically. Recently, a few studies revealed crosstalk between distinct cell death mechanisms and antitumor immunity. The induction of pyroptosis, ferroptosis, and necroptosis combined with ICIs showed synergistically enhanced antitumor activity, even in ICI-resistant tumors. Immunotherapy-activated CD8+ T cells are traditionally believed to induce tumor cell death via the following two main pathways: (i) perforin-granzyme and (ii) Fas-FasL. However, recent studies identified a new mechanism by which CD8+ T cells suppress tumor growth by inducing ferroptosis and pyroptosis, which provoked a review of the relationship between tumor cell death mechanisms and immune system activation. Hence, in this review, we summarize knowledge of the reciprocal interaction between antitumor immunity and distinct cell death mechanisms, particularly necroptosis, ferroptosis, and pyroptosis, which are the three potentially novel mechanisms of immunogenic cell death. Because most evidence is derived from studies using animal and cell models, we also reviewed related bioinformatics data available for human tissues in public databases, which partially confirmed the presence of interactions between tumor cell death and the activation of antitumor immunity.
Journal Article
Role of microRNAs in Immune Regulation with Translational and Clinical Applications
2024
MicroRNAs (miRNAs) are 19–23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Journal Article
Irreversible electroporation combined with chemotherapy and PD-1/PD-L1 blockade enhanced antitumor immunity for locally advanced pancreatic cancer
2023
BackgroundIrreversible electroporation (IRE) is a novel local tumor ablation approach with the potential to stimulate an antitumor immune response. However, it is not effective in preventing distant metastasis in isolation. This study aimed to compare the potential of augmenting the antitumor immune response in patients with locally advanced pancreatic cancer (LAPC) who underwent IRE combined with chemotherapy and PD-1/PD-L1 blockade with those who underwent IRE combined with chemotherapy.MethodsA retrospective review was conducted on LAPC patients treated either with IRE in combination with chemotherapy and PD-1/PD-L1 blockade (group A) or with IRE with chemotherapy alone (group B) from July 2015 to June 2021. The primary outcomes were overall survival (OS) and progression-free survival (PFS), with immune responses and adverse events serving as secondary endpoints. Risk factors for OS and PFS were identified using univariate and multivariate analyses.ResultsA total of 103 patients were included in the final analysis, comprising 25 in group A and 78 in group B. The median duration of follow-up was 18.2 months (3.0–38.6 months). Group A patients demonstrated improved survival compared to group B (median OS: 23.6 vs . 19.4 months, p = 0.001; median PFS: 18.2 vs . 14.7 months, p = 0.022). The data suggest a robust immune response in group A, while adverse events related to the treatment were similar in both groups. The multivariate analysis identified the combination of IRE, chemotherapy, and PD-1/PD-L1 blockade as an independent prognostic factor for OS and PFS.ConclusionThe addition of PD-1/PD-L1 blockade to the regimen of IRE combined with chemotherapy enhanced antitumor immunity and extended survival in LAPC patients.
Journal Article
Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity
2025
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Journal Article
Immunotherapy: an emerging modality to checkmate brain metastasis
2023
The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM.
Journal Article
Engineered biomaterials for cancer immunotherapy
by
Cai, Lulu
,
Wang, Chao
,
Yang, Zhenglin
in
anticancer immunity
,
biomaterials
,
Biomedical materials
2020
Although cancer immunotherapy is showing tremendous promise and has progressed to the clinic, it has only achieved sporadic efficacy, with only a fraction of patients benefitting from the therapy and with undesirable side effects due to poor selectivity and high doses. Localized delivery of immunomodulators to activate anticancer immunity in situ avoids overactivation of the systemic immune system and reduces side effects. Engineered biomaterials—implantable, injectable, or transdermal—fabricated into drug delivery devices are critical components for the development of localized cancer immunotherapies. In this review, we briefly summarize progress in the application of engineered biomaterials to the localized delivery of cancer immunotherapy.
Journal Article
Immune checkpoint inhibitors in the treatment of hepatocellular carcinoma
by
Akbulut, Zeynep
,
Yanıkkaya Demirel, Gülderen
,
Aru, Başak
in
Alcohol use
,
Angiogenesis
,
Antiangiogenic agents
2024
Despite advances in cancer treatment, hepatocellular carcinoma (HCC), the most common form of liver cancer, remains a major public health problem worldwide. The immune microenvironment plays a critical role in regulating tumor progression and resistance to therapy, and in HCC, the tumor microenvironment (TME) is characterized by an abundance of immunosuppressive cells and signals that facilitate immune evasion and metastasis. Recently, anti-cancer immunotherapies, therapeutic interventions designed to modulate the immune system to recognize and eliminate cancer, have become an important cornerstone of cancer therapy. Immunotherapy has demonstrated the ability to improve survival and provide durable cancer control in certain groups of HCC patients, while reducing adverse side effects. These findings represent a significant step toward improving cancer treatment outcomes. As demonstrated in clinical trials, the administration of immune checkpoint inhibitors (ICIs), particularly in combination with anti-angiogenic agents and tyrosine kinase inhibitors, has prolonged survival in a subset of patients with HCC, providing an alternative for patients who progress on first-line therapy. In this review, we aimed to provide an overview of HCC and the role of the immune system in its development, and to summarize the findings of clinical trials involving ICIs, either as monotherapies or in combination with other agents in the treatment of the disease. Challenges and considerations regarding the administration of ICIs in the treatment of HCC are also outlined.
Journal Article
Interplay between A-to-I Editing and Splicing of RNA: A Potential Point of Application for Cancer Therapy
by
Kliuchnikova, Anna A.
,
Shender, Victoria O.
,
Kuznetsova, Ksenia G.
in
Adenosine
,
Animals
,
Antiviral drugs
2022
Adenosine-to-inosine RNA editing is a system of post-transcriptional modification widely distributed in metazoans which is catalyzed by ADAR enzymes and occurs mostly in double-stranded RNA (dsRNA) before splicing. This type of RNA editing changes the genetic code, as inosine generally pairs with cytosine in contrast to adenosine, and this expectably modulates RNA splicing. We review the interconnections between RNA editing and splicing in the context of human cancer. The editing of transcripts may have various effects on splicing, and resultant alternatively spliced isoforms may be either tumor-suppressive or oncogenic. Dysregulated RNA splicing in cancer often causes the release of excess amounts of dsRNA into cytosol, where specific dsRNA sensors provoke antiviral-like responses, including type I interferon signaling. These responses may arrest cell division, causing apoptosis and, externally, stimulate antitumor immunity. Thus, small-molecule spliceosome inhibitors have been shown to facilitate the antiviral-like signaling and are considered to be potential cancer therapies. In turn, a cytoplasmic isoform of ADAR can deaminate dsRNA in cytosol, thereby decreasing its levels and diminishing antitumor innate immunity. We propose that complete or partial inhibition of ADAR may enhance the proapoptotic and cytotoxic effects of splicing inhibitors and that it may be considered a promising addition to cancer therapies targeting RNA splicing.
Journal Article
ISG15 targets glycosylated PD-L1 and promotes its degradation to enhance antitumor immune effects in lung adenocarcinoma
2023
Background
Immunocheckpoint inhibitors (ICIs) have been widely used in the clinical treatment of lung cancer. Although clinical studies and trials have shown that patients can benefit significantly after PD-1/PD-L1 blocking therapy, less than 20% of patients can benefit from ICIs therapy due to tumor heterogeneity and the complexity of immune microenvironment. Several recent studies have explored the immunosuppression of PD-L1 expression and activity by post-translational regulation. Our published articles demonstrate that ISG15 inhibits lung adenocarcinoma progression. Whether ISG15 can enhance the efficacy of ICIs by modulating PD-L1 remains unknown.
Methods
The relationship between ISG15 and lymphocyte infiltration was identified by IHC. The effects of ISG15 on tumor cells and T lymphocytes were assessed using RT-qPCR and Western Blot and in vivo experiments. The underlying mechanism of PD-L1 post-translational modification by ISG15 was revealed by Western blot, RT-qPCR, flow cytometry, and Co-IP. Finally, we performed validation in C57 mice as well as in lung adenocarcinoma tissues.
Results
ISG15 promotes the infiltration of CD4
+
T lymphocytes. In vivo and in vitro experiments demonstrated that ISG15 induces CD4
+
T cell proliferation and invalidity and immune responses against tumors. Mechanistically, we demonstrated that the ubiquitination-like modifying effect of ISG15 on PD-L1 increased the modification of K48-linked ubiquitin chains thus increasing the degradation rate of glycosylated PD-L1 targeting proteasomal pathway. The expression of ISG15 and PD-L1 was negatively correlated in NSCLC tissues. In addition, reduced accumulation of PD-L1 by ISG15 in mice also increased splenic lymphocyte infiltration as well as promoted cytotoxic T cell infiltration in the tumor microenvironment, thereby enhancing anti-tumor immunity.
Conclusions
The ubiquitination modification of PD-L1 by ISG15 increases K48-linked ubiquitin chain modification, thereby increasing the degradation rate of glycosylated PD-L1-targeted proteasome pathway. More importantly, ISG15 enhanced the sensitivity to immunosuppressive therapy. Our study shows that ISG15, as a post-translational modifier of PD-L1, reduces the stability of PD-L1 and may be a potential therapeutic target for cancer immunotherapy.
Journal Article