Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,482 result(s) for "Anticancer properties"
Sort by:
Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties
Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant Uvaria narum, commonly called narumpanal. The nanoparticles were characterised by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM analysis showed AgNPs are highly crystalline and spherical with an average diameter of 7.13 nm. The outstanding catalytic activity of AgNPs was demonstrated by employing the reduction of 4-nitrophenol to 4-aminophenol. The AgNPs showed antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay. AgNPs demonstrated anticancer activity against Dalton’s lymphoma ascites cells (DLA cells) in trypan blue assay and cytotoxicity against three fish cell lines: Oreochromis niloticus liver (onlL; National Repository of Fish Cell Lines, India (NRFC) Accession number—NRFC052) cells, Cyprinus carpio koi fin (CCKF; NRFC Accession number—NRFC007) cells and Cyprinus carpio gill (CyCKG; NRFC Accession number—NRFC064). Furthermore, the AgNPs demonstrated their ability to inhibit pathogenic microorganisms, Staphylococcus aureus, and Escherichia coli. The results from the study displayed green synthesised AgNPs exhibit antiangiogenic activity, cytotoxicity, antimicrobial and catalytic properties, which are crucial characteristics of a molecule with excellent clinical applications.
Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti‐inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology. The anticancer mechanisms of diosmin involve stimulating receptors, increasing ROS, and inducing cell death via the PI3K/Akt pathway. Diosmin upregulates p53 and p21, causing S‐phase cell cycle arrest, and activates caspase‐3, leading to apoptosis. Additionally, diosmin inhibits NF‐κB, reducing inflammation and angiogenesis, and promotes autophagy.
Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems
In the last four decades, nanotechnology has gained momentum with no sign of slowing down. The application of inventions or products from nanotechnology has revolutionised all aspects of everyday life ranging from medical applications to its impact on the food industry. Nanoparticles have made it possible to significantly extend the shelf lives of food product, improve intracellular delivery of hydrophobic drugs and improve the efficacy of specific therapeutics such as anticancer agents. As a consequence, nanotechnology has not only impacted the global standard of living but has also impacted the global economy. In this review, the characteristics of nanoparticles that confers them with suitable and potentially toxic biological effects, as well as their applications in different biological fields and nanoparticle-based drugs and delivery systems in biomedicine including nano-based drugs currently approved by the U.S. Food and Drug Administration (FDA) are discussed. The possible consequence of continuous exposure to nanoparticles due to the increased use of nanotechnology and possible solution is also highlighted.
An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review
Flavonoids are present naturally in many fruits and vegetables including onions, apples, tea, cabbage, cauliflower, berries and nuts which provide us with quercetin, a powerful natural antioxidant and cytotoxic compound. Due to antioxidant property, many nutraceuticals and cosmeceuticals products contain quercetin as a major ingredient nowadays. Current review enlightened sources and quercetin’s role as an antioxidant, antimicrobial, antidiabetic, anticancerous and anti-inflammatory agent in medical field during last 5 to 6 years. Literature search was systematically done using scientific for the published articles of quercetin. A total of 345 articles were reviewed, and it was observed that more than 40% of articles were about quercetin’s use as an antioxidant agent, more than 25% of studies were about its use as an anticancer agent, and articles on antimicrobial activity were more than 15%. 10% of the articles showed anti-inflamamatory effects of quercetin. Literature search also revealed that quercetin alone and its complexes with chitosan, metal ions and polymers possessed good antidiabetic properties. Thus, the review focuses on new therapeutic interventions and drug delivery system of quercetin in medical field for the benefit of mankind.
Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study
First-line therapy for advanced oesophageal cancer is currently limited to fluoropyrimidine plus platinum-based chemotherapy. We aimed to evaluate the antitumour activity of pembrolizumab plus chemotherapy versus chemotherapy alone as first-line treatment in advanced oesophageal cancer and Siewert type 1 gastro-oesophageal junction cancer. We did a randomised, placebo-controlled, double-blind, phase 3 study across 168 medical centres in 26 countries. Patients aged 18 years or older with previously untreated, histologically or cytologically confirmed, locally advanced, unresectable or metastatic oesophageal cancer or Siewert type 1 gastro-oesophageal junction cancer (regardless of PD-L1 status), measurable disease per Response Evaluation Criteria in Solid Tumors version 1.1, and Eastern Cooperative Oncology Group performance status of 0–1, were randomly assigned (1:1) to intravenous pembrolizumab 200 mg or placebo, plus 5-fluorouracil and cisplatin (chemotherapy), once every 3 weeks for up to 35 cycles. Randomisation was stratified by geographical region, histology, and performance status. Patients, investigators, and site staff were masked to group assignment and PD-L1 biomarker status. Primary endpoints were overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients. This trial is registered with ClinicalTrials.gov, NCT03189719, and is closed to recruitment. Between July 25, 2017, and June 3, 2019, 1020 patients were screened and 749 were enrolled and randomly assigned to pembrolizumab plus chemotherapy (n=373 [50%]) or placebo plus chemotherapy (n=376 [50%]). At the first interim analysis (median follow-up of 22·6 months), pembrolizumab plus chemotherapy was superior to placebo plus chemotherapy for overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more (median 13·9 months vs 8·8 months; hazard ratio 0·57 [95% CI 0·43–0·75]; p<0·0001), oesophageal squamous cell carcinoma (12·6 months vs 9·8 months; 0·72 [0·60–0·88]; p=0·0006), PD-L1 CPS of 10 or more (13·5 months vs 9·4 months; 0·62 [0·49–0·78]; p<0·0001), and in all randomised patients (12·4 months vs 9·8 months; 0·73 [0·62–0·86]; p<0·0001). Pembrolizumab plus chemotherapy was superior to placebo plus chemotherapy for progression-free survival in patients with oesophageal squamous cell carcinoma (6·3 months vs 5·8 months; 0·65 [0·54–0·78]; p<0·0001), PD-L1 CPS of 10 or more (7·5 months vs 5·5 months; 0·51 [0·41–0·65]; p<0·0001), and in all randomised patients (6·3 months vs 5·8 months; 0·65 [0·55–0·76]; p<0·0001). Treatment-related adverse events of grade 3 or higher occurred in 266 (72%) patients in the pembrolizumab plus chemotherapy group versus 250 (68%) in the placebo plus chemotherapy group. Compared with placebo plus chemotherapy, pembrolizumab plus chemotherapy improved overall survival in patients with previously untreated, advanced oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients regardless of histology, and had a manageable safety profile in the total as-treated population. Merck Sharp & Dohme.
Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV–vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Lead Phytochemicals for Anticancer Drug Development
Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function and . This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed.
A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity
B-cell lymphoma extra large (BCL-XL) is a well-validated cancer target. However, the on-target and dose-limiting thrombocytopenia limits the use of BCL-XL inhibitors, such as ABT263, as safe and effective anticancer agents. To reduce the toxicity of ABT263, we converted it into DT2216, a BCL-XL proteolysis-targeting chimera (PROTAC), that targets BCL-XL to the Von Hippel-Lindau (VHL) E3 ligase for degradation. We found that DT2216 was more potent against various BCL-XL-dependent leukemia and cancer cells but considerably less toxic to platelets than ABT263 in vitro because VHL is poorly expressed in platelets. In vivo, DT2216 effectively inhibits the growth of several xenograft tumors as a single agent or in combination with other chemotherapeutic agents, without causing appreciable thrombocytopenia. These findings demonstrate the potential to use PROTAC technology to reduce on-target drug toxicities and rescue the therapeutic potential of previously undruggable targets. Furthermore, DT2216 may be developed as a safe first-in-class anticancer agent targeting BCL-XL.
Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications
In the determination of the bioavailability of drugs administered orally, the drugs’ solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities)
Polysaccharides are essential macromolecules which almost exist in all living forms, and have important biological functions, they are getting more attention because they exhibit a wide range of biological and pharmacological activities, such as anti-tumour, immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and hypoglycemia activities, making them one of the most promising candidates in biomedical and pharmaceutical fields. Polysaccharides can be obtained from many different sources, such as plants, microorganisms, algae, and animals. Due to their physicochemical properties, they are susceptible to physical and chemical modifications leading to enhanced properties, which is the basic concept for their diverse applications in biomedical and pharmaceutical fields. In this review, we will give insight into the most recent updated applications of polysaccharides and their potentialities as alternatives for traditional and conventional therapies. Challenges and limitations for polysaccharides in pharmaceutical utilities are discussed as well.