Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,784 result(s) for "Antimalarials - pharmacology"
Sort by:
Spread of Artemisinin Resistance in Plasmodium falciparum Malaria
In this article from Southeast Asia and Africa, the emergence of widespread decreased susceptibility of Plasmodium falciparum to artemisinins, detected throughout Southeast Asia, is associated with a point mutation in the kelch protein on chromosome 13. Artemisinin derivatives are highly potent, rapidly eliminated antimalarial drugs with a broad stage specificity of action. They clear parasitemia more rapidly than all other currently available antimalarial agents. In the 1990s, resistance to available antimalarial drugs such as chloroquine and sulfadoxine–pyrimethamine worsened across areas of the world where malaria is endemic. As a direct consequence, morbidity and mortality associated with malaria increased, especially among African children, who account for most deaths from malaria. 1 The artemisinin-based combination therapies were introduced in the mid-1990s, when there was an imminent prospect of untreatable malaria in Southeast Asia, where resistance to all available antimalarial . . .
Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study
M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers. This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants were enrolled into one of nine dose cohorts (50, 100, 200, 400, 600, 1000, 1250, 1800, or 2100 mg) and randomly assigned (3:1) to M5717 or placebo. A sentinel dosing strategy was used for each dose cohort whereby two participants (one assigned to M5717 and one assigned to placebo) were initially randomised and dosed. Randomisation schedules were generated electronically by independent, unblinded statisticians. Part two was an open-label, non-randomised volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model in which participants were enrolled into three dose cohorts. Healthy men and women of non-childbearing potential aged 18–55 years were eligible for inclusion; individuals in the volunteer infection study were required to be malaria naive. Safety and tolerability (primary outcome of the single ascending dose study and secondary outcome of the volunteer infection study) were assessed by frequency and severity of adverse events. The pharmacokinetic profile of M5717 was also characterised (primary outcome of the volunteer infection study and secondary outcome of the single ascending dose study). Parasite clearance kinetics (primary outcome of the volunteer infection study) were assessed by the parasite reduction ratio and the corresponding parasite clearance half-life; the incidence of recrudescence up to day 28 was determined (secondary outcome of the volunteer infection study). Recrudescent parasites were tested for genetic mutations (exploratory outcome). The trial is registered with ClinicalTrials.gov (NCT03261401). Between Aug 28, 2017, and June 14, 2019, 221 individuals were assessed for eligibility, of whom 66 men were enrolled in the single ascending dose study (eight per cohort for 50–1800 mg cohorts, randomised three M5717 to one placebo, and two in the 2100 mg cohort, randomised one M5717 to one placebo) and 22 men were enrolled in the volunteer infection study (six in the 150 mg cohort and eight each in the 400 mg and 800 mg cohorts). No adverse event was serious; all M5717-related adverse events were mild or moderate in severity and transient, with increased frequency observed at doses above 1250 mg. In the single ascending dose study, treatment-related adverse events occurred in three of 17 individuals in the placebo group; no individual in the 50 mg, 100 mg, or 200 mg groups; one of six individuals in each of the 400 mg, 1000 mg, and 1250 mg groups; two of six individuals in the 600 mg group; and in all individuals in the 1800 mg and 2100 mg groups. In the volunteer infection study, M5717-related adverse events occurred in no participants in the 150 mg or 800 mg groups and in one of eight participants in the 400 mg group. Transient oral hypoesthesia (in three participants) and blurred vision (in four participants) were observed in the 1800 mg or 2100 mg groups and constituted an unknown risk; thus, further dosing was suspended after dosing of the two sentinel individuals in the 2100 mg cohort. Maximum blood concentrations occurred 1–7 h after dosing, and a long half-life was observed (146–193 h at doses ≥200 mg). Parasite clearance occurred in all participants and was biphasic, characterised by initial slow clearance lasting 35–55 h (half-life 231·1 h [95% CI 40·9 to not reached] for 150 mg, 60·4 h [38·6 to 138·6] for 400 mg, and 24·7 h [20·4 to 31·3] for 800 mg), followed by rapid clearance (half-life 3·5 h [3·1 to 4·0] for 150 mg, 3·9 h [3·3 to 4·8] for 400 mg, and 5·5 h [4·8 to 6·4] for 800 mg). Recrudescence occurred in three (50%) of six individuals dosed with 150 mg and two (25%) of eight individuals dosed with 400 mg. Genetic mutations associated with resistance were detected in four cases of parasite recrudescence (two individuals dosed with 150 mg and two dosed with 400 mg). The safety, pharmacokinetics, and antimalarial activity of M5717 support its development as a component of a single-dose antimalarial combination therapy or for malaria prophylaxis. Wellcome Trust and the healthcare business of Merck KGaA, Darmstadt, Germany.
Artemisinin Resistance in Plasmodium falciparum Malaria
Artemisinin therapy is a first-line approach to malaria treatment in many parts of the world. Resistance to this class of agents is an emerging threat to malaria treatment and control. In two studies conducted in Thailand and Cambodia, P. falciparum was found to have reduced in vivo susceptibility to artesunate, characterized by slow parasite clearance. In two studies conducted in Thailand and Cambodia, P. falciparum was found to have reduced in vivo susceptibility to artesunate, characterized by slow parasite clearance. Artemisinins are established antimalarial agents with an excellent safety profile. 1 Artemisinin-based combination therapies are now recommended by the World Health Organization (WHO) as first-line treatment of uncomplicated falciparum malaria in all areas in which malaria is endemic. 2 Replacing ineffective, failing treatments (chloroquine and sulfadoxine–pyrimethamine) with artemisinin-based combination therapies has reduced the morbidity and mortality associated with malaria. 3 – 5 Parenteral artesunate is replacing quinine for the treatment of severe malaria. 6 Recently, there have been signs that the efficacy of artemisinin-based combination therapy and artesunate monotherapy have declined in western Cambodia. 7 – 10 Artemisinin resistance would be disastrous for global malaria control. To . . .
Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study
Dihydroartemisinin-piperaquine has been adopted as first-line artemisinin combination therapy (ACT) for multidrug-resistant Plasmodium falciparum malaria in Cambodia because of few remaining alternatives. We aimed to assess the efficacy of standard 3 day dihydroartemisinin-piperaquine treatment of uncomplicated P falciparum malaria, with and without the addition of primaquine, focusing on the factors involved in drug resistance. In this observational cohort study, we assessed 107 adults aged 18–65 years presenting to Anlong Veng District Hospital, Oddar Meanchey Province, Cambodia, with uncomplicated P falciparum or mixed P falciparum/Plasmodium vivax infection of between 1000 and 200 000 parasites per μL of blood, and participating in a randomised clinical trial in which all had received dihydroartemisinin-piperaquine for 3 days, after which they had been randomly allocated to receive either primaquine or no primaquine. The trial was halted early due to poor dihydroartemisinin-piperaquine efficacy, and we assessed day 42 PCR-corrected therapeutic efficacy (proportion of patients with recurrence at 42 days) and evidence of drug resistance from the initial cohort. We did analyses on both the intention to treat (ITT), modified ITT (withdrawals, losses to follow-up, and those with secondary outcomes [eg, new non-recrudescent malaria infection] were censored on the last day of follow-up), and per-protocol populations of the original trial. The original trial was registered with ClinicalTrials.gov, number NCT01280162. Between Dec 10, 2012, and Feb 18, 2014, we had enrolled 107 patients in the original trial. Enrolment was voluntarily halted on Feb 16, 2014, before reaching planned enrolment (n=150) because of poor efficacy. We had randomly allocated 50 patients to primaquine and 51 patients to no primaquine groups. PCR-adjusted Kaplan-Meier risk of P falciparum 42 day recrudescence was 54% (95% CI 45–63) in the modified ITT analysis population. We found two kelch13 propeller gene mutations associated with artemisinin resistance—a non-synonymous Cys580Tyr substitution in 70 (65%) of 107 participants, an Arg539Thr substitution in 33 (31%), and a wild-type parasite in four (4%). Unlike Arg539Thr, Cys580Tyr was accompanied by two other mutations associated with extended parasite clearance (MAL10:688956 and MAL13:1718319). This combination triple mutation was associated with a 5·4 times greater risk of treatment failure (hazard ratio 5·4 [95% CI 2·4–12]; p<0·0001) and higher piperaquine 50% inhibitory concentration (triple mutant 34 nM [28–41]; non-triple mutant 24 nM [1–27]; p=0·003) than other infections had. The drug was well tolerated, with gastrointestinal symptoms being the most common complaints. The dramatic decline in efficacy of dihydroartemisinin-piperaquine compared with what was observed in a study at the same location in 2010 was strongly associated with a new triple mutation including the kelch13 Cys580Tyr substitution. 3 days of artemisinin as part of an artemisinin combination therapy regimen might be insufficient. Strict regulation and monitoring of antimalarial use, along with non-pharmacological approaches to malaria resistance containment, must be integral parts of the public health response to rapidly accelerating drug resistance in the region. Armed Forces Health Surveillance Center/Global Emerging Infections Surveillance and Response System, Military Infectious Disease Research Program, National Institute of Allergy and Infectious Diseases, and American Society of Tropical Medicine and Hygiene/Burroughs Wellcome Fund.
Efficacy and safety of artemisinin-based combination therapy and the implications of Pfkelch13 and Pfcoronin molecular markers in treatment failure in Senegal
In 2006, Senegal adopted artemisinin-based combination therapy (ACT) as first-line treatment in the management of uncomplicated malaria. This study aimed to update the status of antimalarial efficacy more than ten years after their first introduction. This was a randomized, three-arm, open-label study to evaluate the efficacy and safety of artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ) and dihydroartemisinin-piperaquine (DP) in Senegal. Malaria suspected patients were screened, enrolled, treated, and followed for 28 days for AL and ASAQ arms or 42 days for DP arm. Clinical and parasitological responses were assessed following antimalarial treatment. Genotyping ( msp1 , msp2 and 24 SNP-based barcode) were done to differentiate recrudescence from re-infection; in case of PCR-confirmed treatment failure, Pfk13 propeller and Pfcoronin genes were sequenced. Data was entered and analyzed using the WHO Excel-based application. A total of 496 patients were enrolled. In Diourbel, PCR non-corrected/corrected adequate clinical and parasitological responses (ACPR) was 100.0% in both the AL and ASAQ arms. In Kedougou, PCR corrected ACPR values were 98.8%, 100% and 97.6% in AL, ASAQ and DP arms respectively. No Pfk13 or Pfcoronin mutations associated with artemisinin resistance were found. This study showed that AL, ASAQ and DP remain efficacious and well-tolerated in the treatment of uncomplicated P. falciparum malaria in Senegal.
Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial
Recent efforts in malaria control have resulted in great gains in reducing the burden of Plasmodium falciparum, but P. vivax has been more refractory. Its ability to form dormant liver stages confounds control and elimination efforts. To compare the efficacy and safety of primaquine regimens for radical cure, we undertook a randomized controlled trial in Ethiopia. Patients with normal glucose-6-phosphate dehydrogenase status with symptomatic P. vivax mono-infection were enrolled and randomly assigned to receive either chloroquine (CQ) or artemether-lumefantrine (AL), alone or in combination with 14 d of semi-supervised primaquine (PQ) (3.5 mg/kg total). A total of 398 patients (n = 104 in the CQ arm, n = 100 in the AL arm, n = 102 in the CQ+PQ arm, and n = 92 in the AL+PQ arm) were followed for 1 y, and recurrent episodes were treated with the same treatment allocated at enrolment. The primary endpoints were the risk of P. vivax recurrence at day 28 and at day 42. The risk of recurrent P. vivax infection at day 28 was 4.0% (95% CI 1.5%-10.4%) after CQ treatment and 0% (95% CI 0%-4.0%) after CQ+PQ. The corresponding risks were 12.0% (95% CI 6.8%-20.6%) following AL alone and 2.3% (95% CI 0.6%-9.0%) following AL+PQ. On day 42, the risk was 18.7% (95% CI 12.2%-28.0%) after CQ, 1.2% (95% CI 0.2%-8.0%) after CQ+PQ, 29.9% (95% CI 21.6%-40.5%) after AL, and 5.9% (95% CI 2.4%-13.5%) after AL+PQ (overall p < 0.001). In those not prescribed PQ, the risk of recurrence by day 42 appeared greater following AL treatment than CQ treatment (HR = 1.8 [95% CI 1.0-3.2]; p = 0.059). At the end of follow-up, the incidence rate of P. vivax was 2.2 episodes/person-year for patients treated with CQ compared to 0.4 for patients treated with CQ+PQ (rate ratio: 5.1 [95% CI 2.9-9.1]; p < 0.001) and 2.3 episodes/person-year for AL compared to 0.5 for AL+PQ (rate ratio: 6.4 [95% CI 3.6-11.3]; p < 0.001). There was no difference in the occurrence of adverse events between treatment arms. The main limitations of the study were the early termination of the trial and the omission of haemoglobin measurement after day 42, resulting in an inability to estimate the cumulative risk of anaemia. Despite evidence of CQ-resistant P. vivax, the risk of recurrence in this study was greater following treatment with AL unless it was combined with a supervised course of PQ. PQ combined with either CQ or AL was well tolerated and reduced recurrence of vivax malaria by 5-fold at 1 y. ClinicalTrials.gov NCT01680406.
Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria
Even with the best available treatment, the mortality from severe Plasmodium falciparum malaria remains high. Typical features at death are high parasite loads and obstructed micro- vasculature. Infected erythrocytes (IE) containing mature parasites bind to the host receptor heparan sulfate, which is also an important receptor for merozoite invasion. To block merozoite invasion has not previously been proposed as an adjunctive therapeutic approach but it may preclude the early expansion of an infection that else leads to exacerbated sequestration and death. The drug sevuparin was developed from heparin because heparan sulfate and heparin are nearly identical, so the rationale was that sevuparin would act as a decoy receptor during malaria infection. A phase I study was performed in healthy male volunteers and sevuparin was found safe and well tolerated. A phase I/II clinical study was performed in which sevuparin was administered via short intravenous infusions to malaria patients with uncomplicated malaria who were also receiving atovaquone/proguanil treatment. This was a Phase I/II, randomized, open label, active control, parallel assignment study. Sevuparin was safe and well tolerated in the malaria patients. The mean relative numbers of ring-stage IEs decreased after a single sevuparin infusion and mature parasite IEs appeared transiently in the circulation. The effects observed on numbers of merozoites and throphozoites in the circulation, were detected already one hour after the first sevuparin injection. Here we report the development of a candidate drug named sevuparin that both blocks merozoite invasion and transiently de-sequesters IE in humans with P. falciparum malaria. ClinicalTrials.gov NCT01442168.
A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study
Background Ferroquine (SSR97193) is a candidate anti-malarial currently undergoing clinical trials for malaria. To better understand its pharmacokinetic (PK) and pharmacodynamic (PD) parameters the compound was tested in the experimentally induced blood stage malaria infection model in volunteers. Methods Male and non-pregnant female aged 18–50 years were screened for this phase II, controlled, single-centre clinical trial. Subjects were inoculated with ~1800 viable Plasmodium falciparum 3D7A-infected human erythrocytes, and treated with a single-dose of 800 mg ferroquine. Blood samples were taken at defined time-points to measure PK and PD parameters. The blood concentration of ferroquine and its active metabolite, SSR97213, were measured on dry blood spot samples by ultra-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Parasitaemia and emergence of gametocytes were monitored by quantitative PCR. Safety was determined by recording adverse events and monitoring clinical laboratory assessments during the course of the study. Results Eight subjects were enrolled into the study, inoculated with infected erythrocytes and treated with 800 mg ferroquine. Ferroquine was rapidly absorbed with maximal exposure after 4–8 and 4–12 h exposure for SSR97213. Non-compartmental PK analysis resulted in estimates for half-lives of 10.9 and 23.8 days for ferroquine and SSR97213, respectively. Parasite clearance as reported by parasite reduction ratio was 162.9 (95 % CI 141–188) corresponding to a parasite clearance half-life of 6.5 h (95 % CI: 6.4–6.7 h). PK/PD modelling resulted in a predicted minimal parasiticidal concentration of 20 ng/mL, and the single dosing tested in this study was predicted to maintain an exposure above this threshold for 454 h (37.8 days). Although ferroquine was overall well tolerated, transient elevated transaminase levels were observed in three subjects. Paracetamol was the only concomitant treatment among the two out of these three subjects that may have played a role in the elevated transaminases levels. No clinically significant ECG abnormalities were observed. Conclusions The parameters and PK/PD model derived from this study pave the way to the further rational development of ferroquine as an anti-malarial partner drug. The safety of ferroquine has to be further explored in controlled human trials. Trial registration anzctr.org.au (registration number: ACTRN12613001040752), registered 18/09/2013
Decreased dihydroartemisinin-piperaquine protection against recurrent malaria associated with Plasmodium falciparum plasmepsin 3 copy number variation in Africa
Dihydroartemisinin-piperaquine (DHA-PPQ) is being recommended in Africa for the management of uncomplicated Plasmodium falciparum malaria and for chemoprevention strategies, based on the ability of piperaquine to delay re-infections. Although therapeutic resistance to piperaquine has been linked to increased copy number in plasmepsin-coding parasite genes ( pfpm ), their effect on the duration of the post-treatment prophylactic period remains unclear. Here, we retrospectively analyzed data from a randomized clinical trial, where patients received either DHA-PPQ or artesunate-amodiaquine for recurrent malaria episodes over two years. We observed an increase in the relative risk of re-infection among patients receiving DHA-PPQ compared to artesunate-amodiaquine after the first malaria season. This was driven by shorter average times to reinfection and coincided with an increased frequency of infections comprising pfpm3 multi-copy parasites. The decline in post-treatment protection of DHA-PPQ upon repeated use in a high transmission setting raises concerns for its wider use for chemopreventive strategies in Africa. Authors analyzed a large dihydroartemisinin–piperaquine (DHA-PPQ) repetitive treatment efficacy trial including a 2-year follow-up period, monitoring the evolution of the protective effect of this antimalarial over time.
Artemisinin Resistance in Cambodia: A Clinical Trial Designed to Address an Emerging Problem in Southeast Asia
Background. Increasing rates of failure of artemisinin-based combination therapy have highlighted the possibility of emerging artemisinin resistance along the Thai-Cambodian border. We used an integrated in vivo-in vitro approach to assess the presence of artemisinin resistance in western Cambodia. This article provides additional data from a clinical trial that has been published in The New England Journal of Medicine. Methods. Ninety-four adult patients from Battambang Province, western Cambodia, who presented with uncomplicated falciparum malaria were randomized to receive high-dose artesunate therapy (4 mg/kg/day orally for 7 days) or quinine-tetracycline. Plasma concentrations of dihydroartemisinin, in vitro drug susceptibility, and molecular markers were analyzed. Cases meeting all the following criteria were classified as artemisinin resistant: failure to clear parasites within 7 days of treatment or reemergence of parasites within 28 days of follow-up; adequate plasma concentrations of dihydroartemisinin; prolonged parasite clearance; and increased in vitro drug susceptibility levels for dihydroartemisinin. Results. Two (3.3%) of 60 artesunate-treated patients were classified as artemisinin resistant. Their parasite clearance times were prolonged (133 and 95 h, compared with a median of 52.2 h in patients who were cured). These patients had 50% inhibitory concentrations of dihydroartemisinin that were almost 10 times higher than the reference clone W2. Resistance did not appear to be mediated by the pfmdr1 copy number or selected PfATPase6 polymorphisms previously proposed to confer artemisinin resistance. Conclusion. Artemisinin resistance has emerged along the Thai-Cambodian border. The potentially devastating implications of spreading resistance to a drug that currently has no successor call for further studies of this emerging problem. Clinical trial registration. ClinicalTrials.gov identifier NCT00479206.