Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,485 result(s) for "Antimony - analysis"
Sort by:
Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils
Microorganisms play crucial roles in phosphorus (P) turnover and P bioavailability increases in heavy metal-contaminated soils. However, microbially driven P-cycling processes and mechanisms of their resistance to heavy metal contaminants remain poorly understood. Here, we examined the possible survival strategies of P-cycling microorganisms in horizontal and vertical soil samples from the world’s largest antimony (Sb) mining site, which is located in Xikuangshan, China. We found that total soil Sb and pH were the primary factors affecting bacterial community diversity, structure and P-cycling traits. Bacteria with the gcd gene, encoding an enzyme responsible for gluconic acid production, largely correlated with inorganic phosphate (Pi) solubilization and significantly enhanced soil P bioavailability. Among the 106 nearly complete bacterial metagenome-assembled genomes (MAGs) recovered, 60.4% carried the gcd gene. Pi transportation systems encoded by pit or pstSCAB were widely present in gcd -harboring bacteria, and 43.8% of the gcd -harboring bacteria also carried the acr3 gene encoding an Sb efflux pump. Phylogenetic and potential horizontal gene transfer (HGT) analyses of acr3 indicated that Sb efflux could be a dominant resistance mechanism, and two gcd -harboring MAGs appeared to acquire acr3 through HGT. The results indicated that Sb efflux could enhance P cycling and heavy metal resistance in Pi-solubilizing bacteria in mining soils. This study provides novel strategies for managing and remediating heavy metal-contaminated ecosystems.
Availability, Toxicology and Medical Significance of Antimony
Antimony has been known and used since ancient times, but its applications have increased significantly during the last two centuries. Aside from its few medical applications, it also has industrial applications, acting as a flame retardant and a catalyst. Geologically, native antimony is rare, and it is mostly found in sulfide ores. The main ore minerals of antimony are antimonite and jamesonite. The extensive mining and use of antimony have led to its introduction into the biosphere, where it can be hazardous, depending on its bioavailability and absorption. Detailed studies exist both from active and abandoned mining sites, and from urban settings, which document the environmental impact of antimony pollution and its impact on human physiology. Despite its evident and pronounced toxicity, it has also been used in some drugs, initially tartar emetics and subsequently antimonials. The latter are used to treat tropical diseases and their therapeutic potential for leishmaniasis means that they will not be soon phased out, despite the fact the antimonial resistance is beginning to be documented. The mechanisms by which antimony is introduced into human cells and subsequently excreted are still the subject of research; their elucidation will enable us to better understand antimony toxicity and, hopefully, to improve the nature and delivery method of antimonial drugs.
Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process
Antimony (Sb) contamination released from mine tailings represents a global threat to natural ecosystems and human health. The geochemical conditions of Sb tailings, which are oligotrophic and replete in sulfur (S) and Sb, may promote the coupled metabolism of Sb and S. In this study, multiple lines of evidence indicate that a novel biogeochemical process, S oxidation coupled to Sb(V) reduction, is enzymatically mediated by Desulfurivibrio spp. The distribution of Desulfurivibrio covaried with S and Sb concentrations, showing a high relative abundance in Sb mine tailings but not in samples from surrounding sites (i.e., soils, paddies, and river sediments). Further, the metabolic potential to couple S oxidation to Sb(V) reduction, encoded by a non-canonical, oxidative sulfite reductase ( dsr ) and arsenate reductase ( arrA ) or antimonate reductase ( anrA ), respectively, was found to be common in Desulfurivibrio genomes retrieved from metal-contaminated sites in southern China. Elucidation of enzymatically-catalyzed S oxidation coupled to Sb(V) reduction expands the fundamental understanding of Sb biogeochemical cycling, which may be harnessed to improve remediation strategies for Sb mine tailings.
Optimizing Antimony Speciation Analysis via Frontal Chromatography–ICP-MS to Explore the Release of PET Additives
Antimony (Sb) contamination poses significant environmental and health concerns due to its toxic nature and widespread presence, largely from anthropogenic activities. This study addresses the urgent need for an accurate speciation analysis of Sb, particularly in water sources, emphasizing its migration from polyethylene terephthalate (PET) plastic materials. Current methodologies primarily focus on total Sb content, leaving a critical knowledge gap for its speciation. Here, we present a novel analytical approach utilizing frontal chromatography coupled with inductively coupled plasma mass spectrometry (FC-ICP-MS) for the rapid speciation analysis of Sb(III) and Sb(V) in water. Systematic optimization of the FC-ICP-MS method was achieved through multivariate data analysis, resulting in a remarkably short analysis time of 150 s with a limit of detection below 1 ng kg−1. The optimized method was then applied to characterize PET leaching, revealing a marked effect of the plastic aging and manufacturing process not only on the total amount of Sb released but also on the nature of leached Sb species. This evidence demonstrates the effectiveness of the FC-ICP-MS approach in addressing such an environmental concern, benchmarking a new standard for Sb speciation analysis in consideration of its simplicity, cost effectiveness, greenness, and broad applicability in environmental and health monitoring.
Spatial distribution, geochemical behaviors and risk assessment of antimony in rivers around the antimony mine of Xikuangshan, Hunan Province, China
Pollutants derived from antimony (Sb) mining can easily cause pollution of surrounding water bodies. However, qualitative source analysis of river pollution is mostly conducted, and quantitative source analysis is still lacking. A total of 21 water samples were collected to analyze the pollution status of the heavy metal element Sb, explore the Xikuangshan (XKS) area river heavy metals pollution mechanism, undertake quantitative analysis of the sources of pollution, and carry out irrigation water suitability assessment and potential ecological risk assessment. The results showed that, compared with the mining non-affected area, the maximum excess multiple of Sb in surface water and rivers in Hunan XKS area is 411.31. When the river fluid flows through the mining-affected area, the heavy metal element Sb content increases rapidly, and then decreases due to dilution process. Positive matrix factorization (PMF) source analysis showed that the main source of Sb pollution in the rivers is the impact of mining and smelting (83.60%), followed by the role of waste rock leaching (16.40%). After irrigation, 27.78% of the river water had strong ecological risks, and 16.67% had extremely strong ecological risks. This achievement provides a theoretical basis and technical guarantee for protecting and using the local water body of the mining area.
Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant
ABSTRACT Antimony mining has resulted in considerable pollution to the soil environment. Although studies on antinomy contamination have been conducted, its effects on vertical soil profiles and depth-resolved microbial communities remain unknown. The current study selected three vertical soil profiles (0–2 m) from the world's largest antimony mining area to characterize the depth-resolved soil microbiota and investigate the effects of mining contamination on microbial adaptation. Results demonstrated that contaminated soil profiles showed distinct depth-resolved effects when compared to uncontaminated soil profiles. As soil depth increased, the concentrations of antimony and arsenic gradually declined in the contaminated soil profiles. Acidobacteria, Chloroflexi, Proteobacteria and Thaumarchaeota were the most variable phyla from surface to deep soil. The co-occurrence networks were loosely connected in surface soil, but obviously recovered and were well-connected in deep soil. The metagenomic results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with antimony and arsenic concentrations. Abundances of arsenic-related genes were enriched by severe contamination, but reduced with soil depth. Overall, soil depth-resolved characteristics are often many meters deep and such effects affected the indigenous microbial communities, as well as their metabolic potential due to different contaminants along vertical depths. Results indicated that microbial adaptation changed in response to different levels of contamination throughout the soil profiles, which were distinct from the control profile.
Microbial diversity and community structure in an antimony-rich tailings dump
To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus , Limnobacter , Nocardioides , Lysobacter , Phormidium , and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter , are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.
Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics
ABSTRACT Antimony (Sb), the analog of arsenic (As), is a toxic metalloid that poses risks to the environment and human health. Antimonite (Sb(III)) oxidation can decrease Sb toxicity, which contributes to the bioremediation of Sb contamination. Bacteria can oxidize Sb(III), but the current knowledge regarding Sb(III)-oxidizing bacteria (SbOB) is limited to pure culture studies, thus underestimating the diversity of SbOB. In this study, Sb(III)-oxidizing microcosms were set up using Sb-contaminated rice paddies as inocula. Sb(III) oxidation driven by microorganisms was observed in the microcosms. The increasing copies and transcription of the arsenate-oxidizing gene, aioA, in the microcosms during biotic Sb(III) oxidation indicated that microorganisms mediated Sb(III) oxidation via the aioA genes. Furthermore, a novel combination of DNA-SIP and shotgun metagenomic was applied to identify the SbOB and predict their metabolic potential. Several putative SbOB were identified, including Paracoccus, Rhizobium, Achromobacter and Hydrogenophaga. Furthermore, the metagenomic analysis indicated that all of these putative SbOB contained aioA genes, confirming their roles in Sb(III) oxidation. These results suggested the concept of proof of combining DNA-SIP and shotgun metagenomics directly. In addition, the identification of the novel putative SbOB expands the current knowledge regarding the diversity of SbOB. The aioA gene-containing Paracoccus, Rhizobium, Archromobacter and Hydrogenophaga were identified to play a major role in Sb(III) oxidation.
Repurposing the Sb(III)-specific efflux and sequestration system (ant operon) to mitigate antimonite cross-talk in ArsR-based bacterial arsenite sensors
BackgroundArsR-based whole-cell biosensors offer sensitive colorimetric detection of arsenite [As(III)], yet their broad reactivity toward Group 15 metalloids—especially antimonite [Sb(III)]—limits field specificity. The recently identified ant operon from Comamonas testosteroni JL40 confers Sb(III)-selective resistance via the efflux ATPase AntA, the metallochaperone AntC, and the regulator AntR, providing genetic parts to suppress Sb(III) cross-talk.ResultsWe systematically introduced antA, antC, and three antR homologs into an ArsR regulator coupled with a deoxyviolacein reporter chassis (pJ23119-K12). Co-expression of AntA and AntC under a moderate constitutive promoter (PceuR) shifted the Sb(III) limit of detection (LOD) from 0.073 µM to 0.586 µM, with a modest increase in the As(III) LOD to 0.018 µM. Subsequent integration of AntR1 not only maintained the As(III) LOD at 0.018 µM but also unexpectedly amplified the As(III) signal, extending the linear range to 36 nM–37.5 µM (R² = 0.991). It suggests that AntR1 may modulate the transcriptional circuitry via cross-regulation, warranting further mechanistic inquiry. The modified biosensor TOP10/pJ23119-antACR1 exhibited high selectivity for As(III) over divalent metals (Cd, Pb, Cu, Hg, Mn, Mg) and tolerated Sb(III) up to 1 µM. Performance was retained in 90% freshwater and 50% seawater matrices, enabling accurate quantification of 0–2.5 µM As(III) in deionized, tap, surface, and marine samples.ConclusionBy coupling Sb(III)-specific ant efflux/sequestration components with an ArsR-based sensing module, we developed a portable, low-cost biosensor that overcomes longstanding As(III)/Sb(III) cross-reactivity and performs robustly in complex environmental waters.Graphic abstract
Heavy Metals in Soil around a Typical Antimony Mine Area of China: Pollution Characteristics, Land Cover Influence and Source Identification
To understand contamination characteristics and identify sources of heavy metals in soil affected by complex mine activities, a detailed survey of soil heavy metals from different land cover types was investigated around the Xikuangshan (XKS) antimony mine in south-central China. Soil samples had average concentrations of Sb, As, Cd, Cr, Hg, Pb, Cu, Zn and Ni exceeding their background level in the Hunan province. Sb, As and Cd were the main pollutants. A total of 86.8% of samples were severely polluted, characterized by the Nemerow’s comprehensive index, and 68.4% of samples were of very high potential ecological risk, primarily contributed by Sb, Cd and Hg. Among different land cover patterns, Hg, Pb and Cd concentrations showed a statistically significant difference. The application of Pearson correlation, principal component analysis (PCA) and hierarchical cluster analysis (HCA) combined with spatial interpolation GIS mapping revealed that Ni, Cr and Cu were mainly from natural parent materials, whereas other heavy metals were related to anthropogenic sources. Pb, As and Hg were mainly derived from smelting processes of sulfide minerals in the XKS area. The agricultural practice is the main factor for the accumulation of Cd and Zn, and sphalerite smelting also contributed to high Zn concentrations. Particularly, spatial variation of soil Sb concentrations was affected by multiple factors of complex antimony mine activities related to mining, beneficiation and smelting in the XKS area. These results are useful for the prevention and reduction of heavy metal contamination in soils by various effective measures in typical regions affected by antimony mine activities.