Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
559
result(s) for
"Antimony - toxicity"
Sort by:
The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.)
2023
Selenium (Se) has been used to detoxify various heavy metals in plants. However, the effects and underlying mechanisms of exogenous Se application on the toxicity of antimonite [Sb(III)] and antimonate [Sb(V)] in crops are still poorly understood. Therefore, the potential alleviating roles of Se on the plant growth, antioxidant system, uptake and subcellular distribution of Sb, and expression of Sb-related genes were comprehensively investigated in rice seedlings (
Oryza sativa
L.) under both Sb(III) and Sb(V) stress conditions. The results showed that high concentrations of Sb(III) (100 µM) and Sb(V) (300 µM) caused a significant decrease in plant growth parameters, photosynthetic pigments and relative water content in rice seedlings. In contrast, the addition of Se (20 or 2 µM) improved rice growth, decreased Sb accumulation, and reduced oxidative stress in rice seedlings when exposed to 100 µM Sb(III) and 300 µM Sb(V), respectively. Furthermore, Se application could effectively improve the physiological adaptability of rice seedlings under Sb(III) and Sb(V) stress by regulating enzymatic and non-enzymatic antioxidant systems, Sb subcellular distribution and transcription levels of Sb-related genes, including in antioxidant response (
OsCuZnSOD2
,
OsCATA
and
OsGSH1
), detoxification (
OsPCS1
,
OsPCS2
and
OsABCC1
) and Sb transport and sequestration (
OsLsi1
and
OsWAK11
). Moreover, we also discovered that the mitigation effect of Se was dose-dependent and depended on Sb valence states. Thus, these findings contribute to our understanding of the mechanisms underlying Se-Sb antagonism in rice, offering a potentially useful method for producing both safe and Se-rich crops.
Journal Article
Influence of soil properties and aging on exogenous antimony toxicity to Caenorhabditis elegans in agricultural soil
2024
Exploring the influence of soil on antimony (Sb) aging could help predict Sb toxicity on nematodes that play an important role in agricultural soil nitrogen cycling. This study aimed to investigate the major soil factors affecting the aging process and toxicity of exogenous Sb. Therefore, nematodes were exposed to varying levels of Sb contamination (0–6400 mg/kg) in nine agricultural soils, with aging periods of 7, 56, and 168 days, under dark conditions at 20 ± 0.5 °C for 96 h. The results suggested that nematode reproduction was more sensitive to the toxicity of exogenous trivalent Sb (Sb(III)) compared to growth and fertility. Following 7–168 days of aging, the EC
50
of nematode reproduction increased from 546–1557 to 3560–6193 mg/kg in nine soils contaminated by exogenous Sb(III). Exogenous Sb(III) toxicity is overestimated without considering its aging process. The aging factors (AF) of nine soils aged over 7–168 days were calculated as 3.54–8.03. The regression equation AF = 0.923 pH − 0.812 (
n
= 9, adjust-
r
2
= 0.687,
P
= 0.004) indicated that pH was the primary soil factor explaining 85.2% of the variance in the aging process of exogenous Sb(III). No significant toxicity was observed in soils contaminated with exogenous pentavalent Sb after 7 days of aging. These findings could provide guidance for the adjustment of Sb toxicity data, the revision of soil environmental quality standard, and efficient soil environmental management.
Journal Article
Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy
by
Grimsrud, Tom K
,
Mattock, Heidi
,
Roberts, Georgia K
in
Adrenal medulla
,
Alloys
,
Alloys - toxicity
2022
In March, 2022, a Working Group of 31 scientists from 13 countries met remotely at the invitation of the International Agency for Research on Cancer (IARC) to finalise their evaluation of the carcinogenicity of nine agents: cobalt metal (without tungsten carbide or other metal alloys), soluble cobalt(II) salts, cobalt(II) oxide, cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, trivalent antimony, pentavalent antimony, and weapons-grade tungsten (with nickel and cobalt) alloy. In two Good Laboratory Practice (GLP) studies2 in mice and rats, inhaled cobalt metal caused bronchioloalveolar carcinoma in male and female mice; bronchioloalveolar carcinoma, and malignant pheochromocytoma of the adrenal medulla in male and female rats; pancreatic islet carcinoma in male rats; and leukaemia in female rats. In two GLP studies in mice and rats, inhaled cobalt(II) sulfate caused bronchioloalveolar carcinoma in male and female mice; bronchioloalveolar tumours in male rats; and bronchioloalveolar carcinoma, and adrenal medulla tumours in female rats. In two GLP studies6 in rodents, inhalation exposure caused bronchioloalveolar carcinoma in male and female mice; fibrous histiocytoma and fibrosarcoma of the skin in male mice; lymphoma in female mice; and lung and adrenal medulla tumours in female rats.
Journal Article
Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony
2023
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Journal Article
Availability, Toxicology and Medical Significance of Antimony
by
Scheau, Cristian
,
Badarau, Ioana Anca
,
Caruntu, Ana
in
20th century
,
Antimony - analysis
,
Antimony - toxicity
2022
Antimony has been known and used since ancient times, but its applications have increased significantly during the last two centuries. Aside from its few medical applications, it also has industrial applications, acting as a flame retardant and a catalyst. Geologically, native antimony is rare, and it is mostly found in sulfide ores. The main ore minerals of antimony are antimonite and jamesonite. The extensive mining and use of antimony have led to its introduction into the biosphere, where it can be hazardous, depending on its bioavailability and absorption. Detailed studies exist both from active and abandoned mining sites, and from urban settings, which document the environmental impact of antimony pollution and its impact on human physiology. Despite its evident and pronounced toxicity, it has also been used in some drugs, initially tartar emetics and subsequently antimonials. The latter are used to treat tropical diseases and their therapeutic potential for leishmaniasis means that they will not be soon phased out, despite the fact the antimonial resistance is beginning to be documented. The mechanisms by which antimony is introduced into human cells and subsequently excreted are still the subject of research; their elucidation will enable us to better understand antimony toxicity and, hopefully, to improve the nature and delivery method of antimonial drugs.
Journal Article
Antimony Toxicity
by
Chakravarty, Jaya
,
Sundar, Shyam
in
Antimony - therapeutic use
,
Antimony - toxicity
,
Chemicals
2010
Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.
Journal Article
Applications and societal benefits of plastics
by
Neal, Mike A.
,
Andrady, Anthony L.
in
Antimony - toxicity
,
Benzhydryl Compounds
,
Biopolymers - economics
2009
This article explains the history, from 1600 BC to 2008, of materials that are today termed ‘plastics’. It includes production
volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride,
polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated
safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier
properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving
and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating
to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential
applications of plastic over the next 20 years.
Journal Article
Risk of Cancer for Workers Exposed to Antimony Compounds: A Systematic Review
2019
Background: Antimony (Sb) trioxide and antimony trisulfide are “2B: Possibly carcinogenic to humans” and “3: Unclassifiable” according to the International Agency for Research on Cancer (IARC). The U.S. National Toxicology Program (NTP) concluded that antimony trioxide “is reasonably anticipated to be a human carcinogen based on studies in rats and mice”. We investigated the cancer hazard of antimony compounds for workers, a population with high exposure to antimony substances. Methods: Using the “Guidelines for performing systematic reviews in the development of toxicity factors” (Texas Commission on Environmental Quality (TCEQ) 2017) as a guidance, we established a human and an animal toxicology data stream in Medline and ToxLine. Data from this review were applied in a human health risk assessment. Results: A final pool of 10 occupational and 13 animal toxicology articles resulted after application of TCEQ guidelines. Conclusions: Antimony carcinogenicity evidence involving workers is inadequate, based on confounding, small sample sizes, incomparability across studies, and inadequate reference populations. An increased lung cancer risk cannot be excluded. Evidence for lung neoplasms caused by antimony trioxide inhalation in experimental animals is sufficient. Overall, carcinogenicity in workers is probable (International Agency for Research on Cancer (IARC) 2A). It remains unclear from what occupational exposure duration and dose this effect arises and whether exposure threshold values should be reconsidered.
Journal Article
How Plants Handle Trivalent (+3) Elements
by
Poschenrieder, Charlotte
,
Busoms, Silvia
,
Barceló, Juan
in
Acids
,
Aluminum
,
Aluminum - metabolism
2019
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion’s redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Journal Article
Evaluation of toxic effects induced by arsenic trioxide or/and antimony on autophagy and apoptosis in testis of adult mice
2021
Arsenic trioxide (ATO) and antimony (Sb) are well-known ubiquitous environmental contaminants and cause unpromising male reproductive effects in target and non-target exposed organisms. The main objective of this study was to investigate the effects of ATO or/and Sb on process of autophagy, apoptosis, and reproductive organ in adult mice. For this reason, a total of 32 adult mice were randomly divided into different groups like control group, ATO-treated group, Sb-treated group, and combined group. The duration of current experimental trial was 2 months. Various adverse effects of ATO or/and Sb on sperm parameters, oxidative stress, autophagy, and apoptosis were determined in testis of mice. Results indicated that parameters of sperm quality for organ coefficient, sperm count, ratio of sperm survival, testosterone level, and germ cells were significantly decreased, while malformation rate and vacuolization significantly increased in mice exposed to different treatments. Furthermore, the status of antioxidant index of T-AOC, SOD, and MsrB1 levels was reduced, while MDA increased significantly in ATO + Sb group. Results on TEM investigation determined that the autophagosomes, autolysosome, nuclear pyknosis, and chromatin condensation were prominent ailments, and the levels of autophagy and pro-apoptosis indictors including Beclin1, Atg-5, LC3B/LC3A, caspase-8, cytc, cleaved caspase-3, p53, and Bax were up-regulated in treated group, while the content of an anti-apoptosis maker (Bcl-2) was down-regulated. In conclusion, the results of our experiment suggested that abnormal process of autophagy and apoptosis was triggered by arsenic and antimony, and intensity of toxic effects increased in combined treatments of ATO and Sb.
Graphical abstract
Journal Article