Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70,552
result(s) for
"Antioxidants - chemistry"
Sort by:
Co-Encapsulation of Epigallocatechin-3-Gallate and Vitamin B12 in Zein Microstructures by Electrospinning/Electrospraying Technique
by
Favretto, Maéna
,
Paquis, Raphael
,
Estevinho, Berta N.
in
Animals
,
Antioxidants
,
Antioxidants - chemistry
2023
EGCG is a catechin known for its antioxidant and anti-inflammatory characteristics. Vitamin B12 is an essential vitamin found in animal-derived products, and its deficiency may cause serious health problems such as anemia. The effectiveness of both catechin and vitamin B12 depends on their stability and bioavailability, which can be lost during industrial processes due to degradation when exposed to external factors. A potential solution to this issue is the microencapsulation, which protects the compounds from external agents. The current study aims to microencapsulate EGCG and vitamin B12 in a polymer matrix of biological origin, zein. Microencapsulation was performed using an electrospinning technique, and different concentrations of zein (1–30% w/v) and active compound (0.5–5% w/w) were tested, resulting in the production of micro/nanoparticles, fibers, or the mixture of both. The microstructures were analyzed and characterized in terms of morphology, release profile and kinetics, and encapsulation efficiency. High encapsulation efficiencies were obtained, and the highest were found in the samples with 1% w/w of active substance and 30% w/v of zein. Controlled release studies were conducted in deionized water and in an ethanolic solution, and five kinetic models were applied to the release profiles. The results indicated that the Weibull model was the best fit for the majority of results.
Journal Article
Lactoferrin: Properties and Potential Uses in the Food Industry
by
Sarıtaş, Sümeyye
,
Demir, Ranya
,
Karav, Sercan
in
Animals
,
Anti-Infective Agents - pharmacology
,
Anti-Inflammatory Agents - pharmacology
2025
Lactoferrin (LF) is an 80 kDa glycoprotein that contains approximately 700 amino acids and is a member of the transferrin family. The essential properties of LF, including antimicrobial, antiviral, anticancer, anti-inflammatory, antioxidant, and probiotic effects, have been studied for decades. The iron chelation activity of LF is significantly associated with its antimicrobial, anti-inflammatory, and antioxidant properties. Owing to its probiotic and prebiotic activity, LF also facilitates the growth of beneficial microorganisms and iron-defense immediate-effect properties on pathogens. Additionally, the ability to regulate cell signaling pathways and immune responses makes LF a prominent modulatory protein. These diverse characteristics of LF have gained interest in its therapeutic potential. Studies have suggested that LF could serve as an alternative source to antibiotics in severe infections and illnesses. LF has also gained interest in the food industry for its potential as an additive to fortify products such as yogurt, infant formula, and meat derivatives while also improving the shelf life of foods and providing antimicrobial and antioxidant activity. Prior to using LF in the food industry, the safety and toxicity of food processing are necessary to be investigated. These safety investigations are crucial for addressing potential harm or side effects and ensuring a healthy lifestyle. This review discusses the attributes and safety of LF, particularly its exploitation in the food industry.
Journal Article
A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress
by
Lacerenza, Serena
,
Manera, Clementina
,
Urbani, Andrea
in
Aging - drug effects
,
Aldehydes - chemistry
,
Aldehydes - pharmacology
2018
Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H2O2-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H2O2. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.
Journal Article
Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects
by
Islam, Md. Rezaul
,
Rahman, Md. Mominur
,
Mithi, Faria Mannan
in
Acids
,
Alzheimer's disease
,
Animals
2021
Inflammation is a natural protective mechanism that occurs when the body’s tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators’ activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer’s disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Journal Article
Health Benefits of Quercetin in Age-Related Diseases
2022
Polyphenols are the known group of phytochemicals that essentially consists of phenolic rings. These are the plant product present in varied fruits and vegetables. These secondary metabolites perform a protective function in plants from environmental and biological stress. When consumed as a human diet these are also known to prevent various age-associated diseases. Polyphenols are known to possess antioxidant properties and protect against oxidative stress. The literature survey was carried out using databases such as PubMed, Science direct and Springer. The research articles from last 10–12 years were selected for this review based on its relevancy with the topic. The articles selected was mainly focused on quercetin and its health benefits. The present review highlights the main functions of a flavonoid, quercetin. Quercetin is among the widely occurring polyphenol, found abundantly in nature. It is commonly present in different plant products. Onion is known to have the highest quantity of quercetin. This plant compound is possessed antioxidant properties and is considered to have a protective function against aging. It is known to be present in both free and conjugated forms. Quercetin has anti-oxidative, anti-inflammatory, anti-proliferative, anti-carcinogenic, anti-diabetic, and anti-viral properties. The molecule is lipophilic and can easily cross the BBB (Blood-Brain Barrier) and hence protects from neurodegenerative diseases. Various in vivo and in vitro studies have demonstrated the role of quercetin and here a detailed review of quercetin as a curative agent in neurodegeneration, diabetes, cancer, and inflammation has been carried out. Studies have proved that quercetin plays a crucial role in the prevention of age-related disorders. Quercetin is a potent antioxidant which is currently being used in various pharmaceuticals. Properties of quercetin can be further explored in various other disorders. Nanoformulations and liposomal formulations of quercetin can be made to treat other age associated diseases.
Journal Article
Important Flavonoids and Their Role as a Therapeutic Agent
by
Munir, Sidra
,
Emwas, Abdul-Hamid
,
Badshah, Syed Lal
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - prevention & control
,
Angiogenesis
2020
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Journal Article
A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles
by
Strapáč, Imrich
,
Salayová, Aneta
,
Baláž, Matej
in
Anti-Bacterial Agents - chemical synthesis
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
2020
Our objective in this review article is to find out relevant information about methods of determination of antioxidant activity of silver nanoparticles. There are many studies dealing with mentioned problem and herein we summarize the knowledge about methods evaluating the antioxidant activity of silver nanoparticles reported so far. Many authors declare better antioxidant activity of silver nanoparticles compared to the extract used for synthesis of them. In this review, we focused on methods of antioxidant activity determination in detail to find out novel and perspective techniques to solve the general problems associated with the determination of antioxidant activity of silver nanoparticles.
Journal Article
Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications
by
Lourenço, Sofia C.
,
Moldão-Martins, Margarida
,
Alves, Vítor D.
in
Acids
,
Antioxidants
,
Antioxidants - chemistry
2019
In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.
Journal Article
Kaempferol: A Key Emphasis to Its Anticancer Potential
by
Imran, Muhammad
,
Salehi, Bahare
,
Estevinho, Leticia M.
in
Animals
,
anticancer
,
Antineoplastic Agents, Phytogenic - chemistry
2019
A marked decrease in human cancers, including breast cancer, bone cancer, and cervical cancer, has been linked to the consumption of vegetable and fruit, and the corresponding chemoprotective effect has been associated with the presence of several active molecules, such as kaempferol. Kaempferol is a major flavonoid aglycone found in many natural products, such as beans, bee pollen, broccoli, cabbage, capers, cauliflower, chia seeds, chives, cumin, moringa leaves, endive, fennel, and garlic. Kaempferol displays several pharmacological properties, among them antimicrobial, anti-inflammatory, antioxidant, antitumor, cardioprotective, neuroprotective, and antidiabetic activities, and is being applied in cancer chemotherapy. Specifically, kaempferol-rich food has been linked to a decrease in the risk of developing some types of cancers, including skin, liver, and colon. The mechanisms of action include apoptosis, cell cycle arrest at the G2/M phase, downregulation of epithelial-mesenchymal transition (EMT)-related markers, and phosphoinositide 3-kinase/protein kinase B signaling pathways. In this sense, this article reviews data from experimental studies that investigated the links between kaempferol and kaempferol-rich food intake and cancer prevention. Even though growing evidence supports the use of kaempferol for cancer prevention, further preclinical and clinical investigations using kaempferol or kaempferol-rich foods are of pivotal importance before any public health recommendation or formulation using kaempferol.
Journal Article
A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk
by
Jahanban-Esfahlan, Ali
,
Tabibiazar, Mahnaz
,
Ostadrahimi, Alireza
in
Animals
,
Antioxidants
,
Antioxidants - chemistry
2019
The walnut (Juglans spp.) is an appreciated nut that belongs to the Juglandaceae family. The fruit includes four main parts: the kernel, the skin, the shell, and the green husk. It is widely cultivated due to its edible kernel. In walnut production centers, high amounts of the husk as an agro-forest waste product are produced and discarded away. Recently, it has been demonstrated that the walnut green husk could be valued as a source of different natural bioactive compounds with excellent antioxidant and antimicrobial properties. Regarding this respect, in this contribution, the current scientific knowledge on the antioxidant and antiradical activities, various identified and isolated individual chemical constituents, as well as the functional applications of the walnut husk with more emphasis on the Persian walnut (Juglans regia L.) are reviewed.
Journal Article