Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
71,936
result(s) for
"Antioxidants - chemistry"
Sort by:
Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects
by
Razmovski-Naumovski, Valentina
,
Lowery, Ryan P
,
Purpura, Martin
in
Bioavailability
,
Curcumin
,
Cyclodextrin
2018
PurposeThe optimal health benefits of curcumin are limited by its low solubility in water and corresponding poor intestinal absorption. Cyclodextrins (CD) can form inclusion complexes on a molecular basis with lipophilic compounds, thereby improving aqueous solubility, dispersibility, and absorption. In this study, we investigated the bioavailability of a new γ-cyclodextrin curcumin formulation (CW8). This formulation was compared to a standardized unformulated curcumin extract (StdC) and two commercially available formulations with purported increased bioavailability: a curcumin phytosome formulation (CSL) and a formulation of curcumin with essential oils of turmeric extracted from the rhizome (CEO).MethodsTwelve healthy human volunteers participated in a double-blinded, cross-over study. The plasma concentrations of the individual curcuminoids that are present in turmeric (namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were determined at baseline and at various intervals after oral administration over a 12-h period.ResultsCW8 showed the highest plasma concentrations of curcumin, demethoxycurcumin, and total curcuminoids, whereas CSL administration resulted in the highest levels of bisdemethoxycurcumin. CW8 (39-fold) showed significantly increased relative bioavailability of total curcuminoids (AUC0−12) in comparison with the unformulated StdC.ConclusionThe data presented suggest that γ-cyclodextrin curcumin formulation (CW8) significantly improves the absorption of curcuminoids in healthy humans.
Journal Article
Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species
by
Md. Golam Rabbani
,
Wagdy M. Eldehna
,
Omayma A. Eldahshan
in
Aluminum
,
Amaranthus - chemistry
,
antioxidant pigments
2022
The underutilized Amaranthus leafy vegetables are a unique basis of pigments such as β-cyanins, β-xanthins, and betalains with radical scavenging capacity (RSC). They have abundant phytonutrients and antioxidant components, such as pigments, vitamins, phenolics, and flavonoids. Eight selected genotypes (four genotypes from each species) of underutilized Amaranthus leafy vegetables were evaluated for phytonutrients, pigments, vitamins, phenolics, flavonoids, and antioxidants in a randomized complete block design under ambient field conditions with three replicates. The studied traits showed a wide range of variations across eight genotypes of two species of Amaranthus leafy vegetables. The highest fat, β-xanthins, K, dietary fiber, Mg, β-cyanins, Mn, chlorophyll ab, Zn, TP, TF, betalains, chlorophyll a content, and (RSC) (DPPH) and RSC (ABTS+) were obtained from A. tricolor accessions. Conversely, the highest protein, Cu, carbohydrates, Ca, and chlorophyll b content were obtained from A. lividus accessions. The highest dry matter, carotenoids, Fe, energy, and ash were obtained from A. tricolor and A. lividus. The accession AT2 confirmed the highest vit. C and RSC (DPPH) and RSC (ABTS+); AT5 had the highest TP content; and AT12 had the highest TF content. A. tricolor accessions had high phytochemicals across the two species, such as phytopigments, vitamins, phenolics, antioxidants, and flavonoids, with considerable nutrients and protein. Hence, A. tricolor accessions can be used as high-yielding cultivars comprising ample antioxidants. The correlation study revealed that vitamin C, pigments, flavonoids, β-carotene, and phenolics demonstrated a strong RSC, and showed a substantial contribution to the antioxidant potential (AP) of A. tricolor. The investigation exposed that the accessions displayed a plentiful origin of nutritional values, phytochemicals, and AP with good quenching ability of reactive oxygen species (ROS) that provide enormous prospects for nourishing the mineral-, antioxidant-, and vitamin-threatened community.
Journal Article
Co-Encapsulation of Epigallocatechin-3-Gallate and Vitamin B12 in Zein Microstructures by Electrospinning/Electrospraying Technique
by
Favretto, Maéna
,
Paquis, Raphael
,
Estevinho, Berta N.
in
Animals
,
Antioxidants
,
Antioxidants - chemistry
2023
EGCG is a catechin known for its antioxidant and anti-inflammatory characteristics. Vitamin B12 is an essential vitamin found in animal-derived products, and its deficiency may cause serious health problems such as anemia. The effectiveness of both catechin and vitamin B12 depends on their stability and bioavailability, which can be lost during industrial processes due to degradation when exposed to external factors. A potential solution to this issue is the microencapsulation, which protects the compounds from external agents. The current study aims to microencapsulate EGCG and vitamin B12 in a polymer matrix of biological origin, zein. Microencapsulation was performed using an electrospinning technique, and different concentrations of zein (1–30% w/v) and active compound (0.5–5% w/w) were tested, resulting in the production of micro/nanoparticles, fibers, or the mixture of both. The microstructures were analyzed and characterized in terms of morphology, release profile and kinetics, and encapsulation efficiency. High encapsulation efficiencies were obtained, and the highest were found in the samples with 1% w/w of active substance and 30% w/v of zein. Controlled release studies were conducted in deionized water and in an ethanolic solution, and five kinetic models were applied to the release profiles. The results indicated that the Weibull model was the best fit for the majority of results.
Journal Article
Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin
by
Abouelatta, Samar M.
,
Ibrahim, Samar
,
Elhabak, Mona
in
Acids
,
Administration, Cutaneous
,
Animals
2021
l-Ascorbic acid (LAA) is considered a powerful antioxidant that protects skin from premature aging. Maintaining the stability of vitamin C remains the biggest challenge in cosmeceuticals. Our main aim is the entrapment of high dose of vitamin C in spanlastic vesicles to provide maximum stability and efficacy. LAA-loaded spanlastics were prepared by ethanol injection method and were characterized for entrapment efficiency (EE%), particles size (PS), polydispersity index (PDI), zeta potential, deformability index (DI) and in vivo skin permeation. Selected spanlastics formula composed of span 60 and tween 60 (5:1) showed highest EE% of 89.77 ± 3.61% (w/w), high deformability of 11.13 ± 1.145 as well as good physical and chemical stability for 6 months. Improved drug penetration into stratum corneum (SC) was obtained from spanlastics compared to topical LAA solution. Quantitative real time PCR revealed that MMP2 and MMP9 levels were significantly suppressed in response to LAA spanlastics treated rats by 30.4% and 65.3%, respectively, when compared to the control group after exposure to UV irradiation. Results were confirmed by western blot analysis. Histopathological study of rat skin after UV irradiation revealed that application of LAA-loaded spanlastics provided the highest skin protection compared to UVB and LAA solution treated group which was evident by the normal thick epidermal morphology and the densely arranged dermal collagen fibers. LAA-loaded spanlastics successfully improved LAA stability, skin permeation and antioxidant protection against skin photodamage.
Journal Article
Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults
2023
Chrysanthemum extract possesses antioxidant potential and carbohydrate and fat digestive enzyme inhibitory in vitro. However, no evidence supporting chrysanthemum in modulation of postprandial lipemia and antioxidant status in humans presently exists. This study was to analyze the composition of Imperial Chrysanthemum (IC) extract and determine the effect on changes in postprandial glycemic and lipemic response and antioxidant status in adults after consumption of a high-fat (HF) meal. UHPLC-MS method was used to analyze the components of two kinds of IC extracts (IC-P/IC-E) and in vitro antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydraxyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and Hydroxyl radical (HR) radical scavenging assays. Following a randomized design, 37 healthy adults (age, 25.2 ± 2.6 years, and BMI, 20.9 ± 1.5 kg/m2) were assigned to two groups that consumed the HF meal, or HF meal supplemented by IC extract. Blood samples were collected at fasting state and then at 0.5, 1, 2, 4, 6 and 8 h after the meal consumption. There were 12 compounds with relative content of more than 1% of the extracts, of which amino acid and derivatives, flavonoids, carboxylic acids and derivatives were the main components. Compared with IC-E, the contents of flavonoids in IC-P increased significantly (p < 0.05), and the cynaroside content exceeded 30%. In addition, IC-P showed strong free radical scavenging activity against DPPH, ABTS and HR radicals. Furthermore, according to repeated–measures ANOVA, significant differences were observed in the maximal changes for postprandial glucose, TG, T-AOC and MDA among the two groups. Postprandial glucose has significant difference between the two groups at 1 h after meal and the level in IC group was significantly lower than that in control group. No significant differences were observed in the incremental area under the curve (iAUC) among the two groups. IC significantly improved the serum antioxidant status, as characterized by increased postprandial serum T-AOC, SOD, GSH and decreased MDA. This finding suggests that IC can be used as a natural ingredient for reducing postprandial lipemia and improving the antioxidant status after consuming a HF meal.
Journal Article
Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people
by
Joseph, Elizabeth
,
DiSilvestro, Robert A
,
Bomser, Joshua
in
absorption
,
administration & dosage
,
Adult
2012
Background
Curcumin extracts of turmeric are proposed to produce health benefits. To date, human intervention studies have focused mainly on people with existing health problems given high doses of poorly absorbed curcumin. The purpose of the current study was to check whether in healthy people, a low dose of a lipidated curcumin extract could alter wellness-related measures.
Methods
The present study was conducted in healthy middle aged people (40–60 years old) with a low dose of curcumin (80 mg/day) in a lipidated form expected to have good absorption. Subjects were given either curcumin (N = 19) or placebo (N = 19) for 4 wk. Blood and saliva samples were taken before and after the 4 weeks and analyzed for a variety of blood and saliva measures relevant to health promotion.
Results
Curcumin, but not placebo, produced the following statistically significant changes: lowering of plasma triglyceride values, lowering of salivary amylase levels, raising of salivary radical scavenging capacities, raising of plasma catalase activities, lowering of plasma beta amyloid protein concentrations, lowering of plasma sICAM readings, increased plasma myeloperoxidase without increased c-reactive protein levels, increased plasma nitric oxide, and decreased plasma alanine amino transferase activities.
Conclusion
Collectively, these results demonstrate that a low dose of a curcumin-lipid preparation can produce a variety of potentially health promoting effects in healthy middle aged people.
Journal Article
Lactoferrin: Properties and Potential Uses in the Food Industry
by
Sarıtaş, Sümeyye
,
Demir, Ranya
,
Karav, Sercan
in
Animals
,
Anti-Infective Agents - pharmacology
,
Anti-Inflammatory Agents - pharmacology
2025
Lactoferrin (LF) is an 80 kDa glycoprotein that contains approximately 700 amino acids and is a member of the transferrin family. The essential properties of LF, including antimicrobial, antiviral, anticancer, anti-inflammatory, antioxidant, and probiotic effects, have been studied for decades. The iron chelation activity of LF is significantly associated with its antimicrobial, anti-inflammatory, and antioxidant properties. Owing to its probiotic and prebiotic activity, LF also facilitates the growth of beneficial microorganisms and iron-defense immediate-effect properties on pathogens. Additionally, the ability to regulate cell signaling pathways and immune responses makes LF a prominent modulatory protein. These diverse characteristics of LF have gained interest in its therapeutic potential. Studies have suggested that LF could serve as an alternative source to antibiotics in severe infections and illnesses. LF has also gained interest in the food industry for its potential as an additive to fortify products such as yogurt, infant formula, and meat derivatives while also improving the shelf life of foods and providing antimicrobial and antioxidant activity. Prior to using LF in the food industry, the safety and toxicity of food processing are necessary to be investigated. These safety investigations are crucial for addressing potential harm or side effects and ensuring a healthy lifestyle. This review discusses the attributes and safety of LF, particularly its exploitation in the food industry.
Journal Article
Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial
2018
Ubiquinone is a lipid antioxidant, and a novel liquid ubiquinol (a hydro-soluble, reduced form of coenzyme Q10) supplement was recently developed. The purpose of this study was to examine the levels of glucose, lipids and antioxidant capacity of type 2 diabetes patients after liquid ubiquinol supplementation. This study was designed as a randomised, double-blind, placebo-controlled trial. In all, fifty participants were randomly assigned to a placebo (n 25) or liquid ubiquinol (100 mg/d, n 25) group, and the intervention lasted for 12 weeks. Plasma coenzyme Q10, glucose homoeostasis parameters, lipid profiles, oxidative stress and antioxidative enzyme activities were measured during the study. After 12 weeks of supplementation, glyco Hb (HbA1c) value was significantly decreased in the liquid ubiquinol group (P=0·03), and subjects in the liquid ubiquinol group had significantly lower anti-glycaemic medication effect scores (MES) compared with those in the placebo group (P=0·03). The catalase (P<0·01) and glutathione peroxidase (P=0·03) activities were increased significantly after supplementation. Plasma coenzyme Q10 was correlated with the insulin level (P=0·05), homoeostatic model assessment-insulin resistance (P=0·07), quantitative insulin sensitivity check index (P=0·03) and the anti-hyperglycaemic agents’ MES (P=0·03) after supplementation. Lipid profiles did not change after supplementation; however, the subjects in the placebo group had a significantly lower level of HDL-cholesterol after 12 weeks of intervention. In conclusion, oral intake of 100 mg/d liquid ubiquinol might benefit type 2 diabetes patients by increasing antioxidant enzyme activity levels, reducing HbA1c levels and maintaining HDL-cholesterol levels.
Journal Article
Consumption of Nitrate-Rich Beetroot Juice with or without Vitamin C Supplementation Increases the Excretion of Urinary Nitrate, Nitrite, and N-nitroso Compounds in Humans
by
Guggeis, Martina A.
,
Berends, Julia E.
,
Kuhnle, Gunter G.
in
Adolescent
,
Adult
,
Antioxidants - administration & dosage
2019
Consumption of nitrate-rich beetroot juice (BRJ) by athletes induces a number of beneficial physiological health effects, which are linked to the formation of nitric oxide (NO) from nitrate. However, following a secondary pathway, NO may also lead to the formation of N-nitroso compounds (NOCs), which are known to be carcinogenic in 39 animal species. The extent of the formation of NOCs is modulated by various other dietary factors, such as vitamin C. The present study investigates the endogenous formation of NOCs after BRJ intake and the impact of vitamin C on urinary NOC excretion. In a randomized, controlled trial, 29 healthy recreationally active volunteers ingested BRJ with or without additional vitamin C supplements for one week. A significant increase of urinary apparent total N-nitroso Compounds (ATNC) was found after one dose (5 to 47 nmol/mmol: p < 0.0001) and a further increase was found after seven consecutive doses of BRJ (104 nmol/mmol: p < 0.0001). Vitamin C supplementation inhibited ATNC increase after one dose (16 compared to 72 nmol/mmol, p < 0.01), but not after seven daily doses. This is the first study that shows that BRJ supplementation leads to an increase in formation of potentially carcinogenic NOCs. In order to protect athlete’s health, it is therefore important to be cautious with chronic use of BRJ to enhance sports performances.
Journal Article
Alterations in Herbage Yield, Antioxidant Activities, Phytochemical Contents, and Bioactive Compounds of Sabah Snake Grass (Clinacanthus Nutans L.) with Regards to Harvesting Age and Harvesting Frequency
by
Ahmad, Syahida
,
Abd Samat, Nur Mardhiati Afifa
,
Bakar, Ros Azrinawati Hana
in
Acanthaceae - chemistry
,
Acanthaceae - growth & development
,
Agricultural production
2020
Sabah snake grass or Clinacanthus nutans has drawn public interest having significant economic benefits attributable to the presence of phytochemicals and several interesting bioactive constituents that may differ according to harvesting age and harvesting frequency. The current study was aimed to evaluate the effect of harvesting age and harvesting frequency towards herbal yield, antioxidant activities, phytochemicals synthesis, and bioactive compounds of C. nutans. A factorial randomized completely block design with five replications was used to illustrate the relationship between herbal yield, DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays, total phenolic and flavonoid content affected by harvesting age (week 8, 12, and 16 after transplanting), and harvesting frequency (harvest 1, 2, and 3). The bioactive compounds by HPLC were also determined to describe the interaction effect between both harvesting age and harvesting frequency. The yield, antioxidant activities, and phytochemical contents were gradually increased as the plant grew, with the highest recorded during week 16. However, the synthesis and activities of phytochemicals were reduced in subsequent harvests despite the increment of the herbal yield. All bioactive compounds were found to be influenced insignificantly and significantly by harvesting age and harvesting frequency, respectively, specifically to shaftoside, iso-orientin, and orientin. Among all constituents, shaftoside was the main compound at various harvesting ages and harvesting frequencies. These results indicated that harvesting at week 16 with 1st harvest frequency might enhance the yield while sustaining the high synthesis of polyphenols and antioxidant activities of C. nutans.
Journal Article