Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,075
result(s) for
"Antisense oligonucleotide"
Sort by:
Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy
by
Chiriboga, Claudia A
,
Foster, Richard
,
Day, John W
in
Age of Onset
,
Antisense oligonucleotides
,
backache
2018
In this phase 3 trial, among children with later-onset spinal muscular atrophy, those who received nusinersen had improvement in motor-function scores and those who underwent a sham procedure did not.
Journal Article
Thiomorpholino oligonucleotides as a robust class of next generation platforms for alternate mRNA splicing
by
Langer, Heera
,
Paul, Sibasish
,
Jastrzebska, Katarzyna
in
Alternative splicing
,
Analogs
,
Animals
2022
Recent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues. TMOs are composed of a morpholino nucleoside joined by thiophosphoramidate internucleotide linkages. Unlike phosphorodiamidate morpholino oligomers (PMOs) that are currently used in various splice-switching ASO drugs, TMOs can be synthesized using solid-phase oligonucleotide synthesis methodologies. In this study, we synthesized various TMOs and evaluated their efficacy to induce exon skipping in a Duchenne muscular dystrophy (DMD) in vitro model using H2K mdx mouse myotubes. Our experiments demonstrated that TMOs can efficiently internalize and induce excellent exon 23 skipping potency compared with a conventional PMO control and other widely used nucleotide analogs, such as 2’-O-methyl and 2’-O-methoxyethyl ASOs. Notably, TMOs performed well at low concentrations (5−20 nM). Therefore, the dosages can be minimized, which may improve the drug safety profile. Based on the present study, we propose that TMOs represent a new, promising class of nucleic acid analogs for future oligonucleotide therapeutic development.
Journal Article
Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy
by
Zhong, Z. John
,
Chiriboga, Claudia A
,
Saito, Kayoko
in
Age of Onset
,
Antisense oligonucleotides
,
Babies
2017
In this phase 3 trial, among infants with spinal muscular atrophy, those who received nusinersen were more likely to achieve major motor milestones and less likely to need permanent assisted ventilation than those who underwent a sham procedure.
Journal Article
Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS
by
Genge, Angela
,
Miller, Timothy
,
Van Damme, Philip
in
Adult
,
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - cerebrospinal fluid
2020
In a phase 1–2 dose-escalation trial involving adults with ALS due to
SOD1
mutations who received intrathecal tofersen (an antisense oligonucleotide) or placebo, the levels of mutant SOD1 in the CSF were 33 percentage points lower in the highest-dose tofersen group than in the placebo group.
Journal Article
Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B Infection
by
Wong, Alexander
,
Plesniak, Robert
,
Takaguchi, Koichi
in
Alanine transaminase
,
Antigens
,
Antisense oligonucleotides
2022
In a phase 2 trial, bepirovirsen, an antisense oligonucleotide that targets all hepatitis B virus mRNAs, resulted in sustained loss of hepatitis B surface antigen and HBV DNA in 9 to 10% of participants with chronic HBV infection.
Journal Article
Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: a phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study
2024
Hexanucleotide repeat expansion of C9orf72 is a common genetic cause of amyotrophic lateral sclerosis (ALS). No C9orf72-targeted treatments are available. BIIB078 is an investigational antisense oligonucleotide targeting C9orf72 sense RNA. We aimed to assess the safety, tolerability, and pharmacokinetics of BIIB078 in participants with C9orf72-associated ALS.
This phase 1, randomised controlled trial was done at 22 sites in six countries (Canada, Ireland, Netherlands, Switzerland, UK, and USA). Adults with ALS and a pathogenic repeat expansion in C9orf72 were randomly assigned within six cohorts, via Interactive Response Technology in a 3:1 ratio per cohort, to receive BIIB078 (5 mg, 10 mg, 20 mg, 35 mg, 60 mg, or 90 mg in cohorts 1–6, respectively) or placebo, via an intrathecal bolus injection. The treatment period consisted of three loading doses of study treatment, administered approximately once every 2 weeks, followed by monthly maintenance doses during a treatment period of about 3 months for cohorts 1–3 and about 6 months for cohorts 4–6. Patients and investigators were masked to treatment assignment. The primary endpoint was the incidence of adverse events and serious adverse events. This trial was registered with ClinicalTrials.gov (NCT03626012) and is completed.
Between Sept 10, 2018, and Nov 17, 2021, 124 patients were screened for inclusion in the study. 18 patients were excluded and 106 participants were enrolled and randomly assigned to receive 5 mg (n=6), 10 mg (n=9), 20 mg (n=9), 35 mg (n=19), 60 mg (n=18), or 90 mg (n=18) of BIIB078, or placebo (n=27). 58 (55%) of 106 patients were female. All patients received at least one dose of study treatment and were included in all analyses. All participants had at least one adverse event; most adverse events were mild or moderate in severity and did not lead to treatment discontinuation. The most common adverse events in BIIB078-treated participants were falls, procedural pain, headache, and post lumbar puncture syndrome. 14 (18%) of 79 patients who received any dose of BIIB078 reported serious adverse events, compared with nine (33%) of 27 patients who received placebo. Five participants who received BIIB078 and three participants who received placebo had fatal adverse events: respiratory failure in a participant who received 10 mg BIIB078, ALS worsening in two participants who received 35 mg BIIB078, traumatic intracerebral haemorrhage in one participant who received 35 mg BIIB078, pulmonary embolism in one participant who received 60 mg BIIB078, and respiratory failure in three participants who received placebo. All deaths were assessed as not related to the study treatment by the reporting investigator.
On the basis of these phase 1 study results, including secondary and exploratory findings showing no reduction in neurofilament levels and no benefit on clinical outcomes relative to the placebo cohort, BIIB078 clinical development has been discontinued. However, these results will be informative in furthering our understanding of the complex pathobiology of C9orf72-associated ALS.
Biogen.
Journal Article
A framework for individualized splice-switching oligonucleotide therapy
by
El Achkar, Christelle Moufawad
,
Cornelissen, Laura
,
Faour, Kamli N. W.
in
38/91
,
45/23
,
692/308/153
2023
Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases
1
, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder
2
,
3
, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were ‘probably’ or ‘possibly’ amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.
Whole-genome sequencing analyses in a cohort of individuals with ataxia-telangiectasia are used to identify genetic variants that might be amenable to treatment with splice-switching antisense oligonucleotides (ASOs), and develop ASOs with therapeutic potential.
Journal Article
Nusinersen: First Global Approval
2017
Spinal muscular atrophy (SMA) is a rare autosomal recessive disorder characterized by muscle atrophy and weakness resulting from motor neuron degeneration in the spinal cord and brainstem. It is most commonly caused by insufficient levels of survival motor neuron (SMN) protein (which is critical for motor neuron maintenance) secondary to deletions or mutations in the
SMN1
gene. Nusinersen (SPINRAZA™) is a modified antisense oligonucleotide that binds to a specific sequence in the intron, downstream of exon 7 on the pre-messenger ribonucleic acid (pre-mRNA) of the
SMN2
gene. This modulates the splicing of the
SMN2
mRNA transcript to include exon 7, thereby increasing the production of full-length SMN protein. Nusinersen is approved in the USA for intrathecal use in paediatric and adult patients with SMA. Regulatory assessments for nusinersen as a treatment for SMA are underway in the EU and several other countries. This article summarizes the milestones in the development of nusinersen leading to this first approval for SMA in paediatric and adult patients.
Journal Article
Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency
2020
The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or μ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21–targeted μ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21–regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of μ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of μ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.
Journal Article
Phosphorothioates, Essential Components of Therapeutic Oligonucleotides
2014
Phosphorothioates have found their usefulness in the general area of oligonucleotide therapeutic applications. Initially this modification was introduced into the antisense methodology because of the nuclease resistance of the phosphorothioate linkage in comparison with that of the phosphate linkage. However, as experimental data accumulated, it was detected that this chemical modification also facilitates cellular uptake and bioavailibity in vivo. Thus, today the majority of therapeutic oligonucleotides contain this modification. This review will discuss the historical development of this modification and present some of its chemical properties where they differ from those of the phosphate group. The antisense application will be discussed in the original context with cleavage of the target mRNA, but other target RNAs such as microRNAs and long noncoding RNAs will also be covered. It continues with applications where the target RNA should not be cleaved. A brief presentation of decoy oligonucleotides will be included, as well as some miscellaneous applications. Cellular uptake is a crucial step for oligonucleotides to reach their target and will be briefly reviewed. Lastly, a most surprising recent observation is the presence of phosphorothioate groups in bacterial DNA where functions still remain to be fully determined.
Journal Article