Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,528 result(s) for "Aorta - physiology"
Sort by:
Variations in stiffness and structure of the human aorta along its length
This study investigates the regional mechanical, structural, and morphological properties of the human aorta using fresh tissues from 10 middle-aged and elderly donors (62 ± 11 years old, 30% female). Four locations were analyzed: descending thoracic aorta (TA), supraceliac aorta (SC), infrarenal aorta (IFR), and distal abdominal aorta (dAA). Planar biaxial testing revealed location-specific stiffness, with distal regions exhibiting significantly reduced stretch at physiological stress levels. At 75 kPa, the circumferential stretch decreased from 1.24 in the TA to 1.12 in the dAA, while longitudinal stretch declined from 1.18 to 1.12. Elastin density in the medial layer showed a marked reduction, decreasing from 23.5% in the TA to 8.9% in the dAA, accompanied by thinning and fragmentation of elastic lamellae distally. Glycosaminoglycans were primarily localized near the intima and exhibited a consistent density (~ 5–6%) across all locations. Morphometric analysis revealed a progressive decrease in wall thickness in load-free conditions from 3.10 mm in the TA to 2.77 mm in the dAA, while stress-free configurations highlighted greater residual stresses in distal segments. Constitutive modeling using four common constitutive relations, including a four-fiber family model, provided parameters for computational simulations, with the four-fiber model offering the best fit. These findings provide quantitative insights into location-specific variations in the human aorta, advancing our understanding of its biomechanical and structural heterogeneity and informing computational models and therapeutic approaches.
Impact of wall displacements on the large-scale flow coherence in ascending aorta
In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.
Significance of Dynamic Axial Stretching on Estimating Biomechanical Behavior and Properties of the Human Ascending Aorta
Contrary to most vessels, the ascending thoracic aorta (ATA) not only distends but also elongates in the axial direction. The purpose of this study is to investigate the biomechanical behavior of the ascending thoracic aorta (ATA) in response to dynamic axial stretching during the cardiac cycle. In addition, the implications of neglecting this dynamic axial stretching when estimating the constitutive model parameters of the ATA are investigated. The investigations were performed through in silico simulations by assuming a Gasser–Ogden–Holzapfel (GOH) constitutive model representative of ATA tissue material. The GOH model parameters were obtained from biaxial tests performed on four human ATA tissues in a previous study. Pressure–diameter curves were simulated as synthetic data to assess the effect of neglecting dynamic axial stretching on estimating constitutive model parameters. Our findings reveal a significant increase in axial stress (~ 16%) and stored strain energy (~ 18%) in the vessel when dynamic axial stretching is considered, as opposed to assuming a fixed axial stretch. All but one artery showed increased volume compliance while considering a dynamic axial stretching condition. Furthermore, we observe a notable difference in the estimated constitutive model parameters when dynamic axial stretching of the ATA is neglected, compared to the ground truth model parameters. These results underscore the critical importance of accounting for axial deformations when conducting in vivo biomechanical characterization of the ascending thoracic aorta.
Direct visualization of interstitial flow distribution in aortic walls
Vascular smooth muscle cells are exposed to interstitial flow across aortic walls. Fluid shear stress changes the phenotype of smooth muscle cells to the synthetic type; hence, the fast interstitial flow might be related to aortic diseases. In this study, we propose a novel method to directly measure the interstitial flow velocity from the spatiotemporal changes in the concentration of a fluorescent dye. The lumen of a mouse thoracic aorta was filled with a fluorescent dye and pressurized in ex vivo. The flow of the fluorescent dye from the intimal to the adventitial sides was successfully visualized under a two-photon microscope. The flow velocity was determined by applying a one-dimensional advection–diffusion equation to the kymograph obtained from a series of fluorescent images. The results confirmed a higher interstitial flow velocity in the aortic walls under higher intraluminal pressure. A comparison of the interstitial flow velocity in the radial direction showed faster flow on the more intimal side, where hyperplasia is often found in hypertension. These results indicate that the proposed method can be used to visualize the interstitial flow directly and thus, determine the local interstitial flow velocity.
Hemodynamic analysis of outflow grafting positions of a ventricular assist device using closed-loop multiscale CFD simulations: Preliminary results
Subclavian arteries are a possible alternate location for left ventricular assist device (LVAD) outflow grafts due to easier surgical access and application in high risk patients. As vascular blood flow mechanics strongly influence the clinical outcome, insights into the hemodynamics during LVAD support can be used to evaluate different grafting locations. In this study, the feasibility of left and right subclavian artery (SA) grafting was investigated for the HeartWare HVAD with a numerical multiscale model. A 3-D CFD model of the aortic arch was coupled to a lumped parameter model of the cardiovascular system under LVAD support. Grafts in the left and right SA were placed at three different anastomoses angles (90°, 60° and 30°). Additionally, standard grafting of the ascending and descending aorta was modelled. Full support LVAD (5l/min) and partial support LVAD (3l/min) in co-pulsation and counter-pulsation mode were analysed. The grafting positions were investigated regarding coronary and cerebral perfusion. Furthermore, the influence of the anastomosis angle on wall shear stress (WSS) was evaluated. Grafting of left or right subclavian arteries has similar hemodynamic performance in comparison to standard cannula positions. Angularity change of the graft anastomosis from 90° to 30° slightly increases the coronary and cerebral blood flow by 6–9% while significantly reduces the WSS by 35%. Cannulation of the SA is a feasible anastomosis location for the HVAD in the investigated vessel geometry.
A population-based phenome-wide association study of cardiac and aortic structure and function
Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart–brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers. Using magnetic resonance images of the heart and aorta from 26,893 individuals in the UK Biobank, a phenome-wide association study associates cardiovascular imaging phenotypes with a wide range of demographic, lifestyle and clinical features.
Aortic Function’s Adaptation in Response to Exercise-Induced Stress Assessing by 1.5T MRI: A Pilot Study in Healthy Volunteers
Evaluation of the aortic \"elastic reserve\" might be a relevant marker to assess the risk of aortic event. Our aim was to compare regional aortic elasticity at rest and during supine bicycle exercise at 1.5 T MRI in healthy individuals. Fifteen volunteers (8 men), with a mean age of 29 (23-41) years, completed the entire protocol. Images were acquired immediately following maximal exercise. Retrospective cine sequences were acquired to assess compliance, distensibility, maximum rates of systolic distension and diastolic recoil at four different locations: ascending aorta, proximal descending aorta, distal descending aorta and aorta above the coeliac trunk level. Segmental aortic pulse wave velocity (PWV) was assessed by through plane velocity-encoded MRI. Exercise induced a significant decrease of aortic compliance and distensibility, and a significant increase of the absolute values of maximum rates of systolic distension and diastolic recoil at all sites (p<10-3). At rest and during stress, ascending aortic compliance was statistically higher compared to the whole descending aorta (p≤0.0007). We found a strong correlation between the rate pressure product and aortic distensibility at all sites (r = - 0.6 to -0.75 according to the site, p<10-4). PWV measured at the proximal and distal descending aorta increased significantly during stress (p = 0.02 and p = 0.008, respectively). Assessment of regional aortic function during exercise is feasible using MRI. During stress, aortic elasticity decreases significantly in correlation with an increase of the PWV. Further studies are required to create thresholds for ascending aorta dysfunction among patients with aneurysms, and to monitor the impact of medication on aortic remodeling.
Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase
Corticosteroids have been shown to exert beneficial effects in the treatment of acute myocardial infarction, but the precise mechanisms underlying their protective effects are unknown. Here we show that high-dose corticosteroids exert cardiovascular protection through a novel mechanism involving the rapid, non-transcriptional activation of endothelial nitric oxide synthase (eNOS). Binding of corticosteroids to the glucocorticoid receptor (GR) stimulated phosphatidylinositol 3-kinase and protein kinase Akt, leading to eNOS activation and nitric oxide dependent vasorelaxation. Acute administration of pharmacological concentrations of corticosteroids in mice led to decreased vascular inflammation and reduced myocardial infarct size following ischemia and reperfusion injury. These beneficial effects of corticosteroids were abolished by GR antagonists or eNOS inhibitors in wild-type mice and were completely absent in eNOS-deficient (Nos3(-/-)) mice. The rapid activation of eNOS by the non-nuclear actions of GR, therefore, represents an important cardiovascular protective effect of acute high-dose corticosteroid therapy.
Wave propagation in a model of the arterial circulation
The propagation of the arterial pulse wave in the large systemic arteries has been calculated using a linearised method of characteristics analysis to follow the waves generated by the heart. The model includes anatomical and physiological data for the 55 largest arteries adjusted so that the bifurcating tree of arteries is well matched for forward travelling waves. The peripheral arteries in the model are terminated by resistance elements which are adjusted to produce a physiologically reasonable distribution of mean blood flow. In the model, the pressure and velocity wave generated by the contraction of the left ventricle propagates to the periphery where it is reflected. These reflected waves are re-reflected by each of the bifurcations that they encounter and a very complex pattern of waves is generated. The results of the calculations exhibit many of the features of the systemic arteries, including the increase of the pulse pressure with distance away from the heart as well as the initial decrease and then the large increase in the magnitude of back flow during late systole going from the ascending aorta to the abdominal aorta to the arteries of the leg. The model is then used to study the effects of the reflection or absorption of waves by the heart and the mechanisms leading to the incisura are investigated. Calculations are carried out with the total occlusion of different arterial segments in order to model experiments in which the effects of the occlusion of different arteries on pressure and flow in the ascending aorta were measured. Finally, the effects of changes in peripheral resistance on pressure and velocity waveforms are also studied. We conclude from these calculations that the complex pattern of wave propagation in the large arteries may be the most important determinant of arterial haemodynamics.
Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries
The biomechanics of large- and medium-sized arteries influence the pathophysiology of arterial disease and the response to therapeutic interventions. However, a comprehensive comparative analysis of human arterial biaxial mechanical properties has not yet been reported. Planar biaxial extension was used to establish the passive mechanical properties of human thoracic (TA, n = 8 ) and abdominal (AA, n = 7 ) aorta, common carotid (CCA, n = 21 ), subclavian (SA, n = 12 ), renal (RA, n = 13 ) and common iliac (CIA, n = 16 ) arteries from 11 deceased subjects ( 54 ± 21  years old). Histological evaluation determined the structure of each specimen. Experimental data were used to determine constitutive parameters for a structurally motivated nonlinear anisotropic constitutive model. All arteries demonstrated appreciable anisotropy and large nonlinear deformations. Most CCA, SA, TA, AA and CIA specimens were stiffer longitudinally, while most RAs were stiffer circumferentially. A switch in anisotropy was occasionally demonstrated for all arteries. The CCA was the most compliant, least anisotropic and least frequently diseased of all arteries, while the CIA and AA were the stiffest and the most diseased. The severity of atherosclerosis correlated with age, but was not affected by laterality. Elastin fibers in the aorta, SA and CCA were uniformly and mostly circumferentially distributed throughout the media, while in the RA and CIA, elastin was primarily axially aligned and concentrated in the external elastic lamina. Constitutive modeling provided good fits to the experimental data for most arteries. Biomechanical and architectural features of major arteries differ depending on location and functional environment. A better understanding of localized arterial mechanical properties may support the development of site-specific treatment modalities for arterial disease.