Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
313
result(s) for
"Aphids - drug effects"
Sort by:
Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators
2021
The agricultural use of silica (SiO
2
) nanoparticles (NPs) has the potential to control insect pests while the safety and tritrophic effects on plants and beneficial natural enemies remains unknown. Here, we evaluate the effects of silica NPs on insect pests with different feeding niches, natural enemies, and a plant. Silica NPs were applied at different concentrations (75–425 mg/L) on field-cultivated faba bean and soybean for two growing seasons. The faba bean pests, the cowpea aphid
Aphis craccivora
and the American serpentine leafminer
Liriomyza trifolii
, and the soybean pest, the cotton leafworm
Spodoptera littoralis
, were monitored along with their associated predators. Additional laboratory experiments were performed to test the effects of silica NPs on the growth of faba bean seedlings and to determine whether the rove beetle
Paederus fuscipes
is attracted to cotton leafworm-infested soybean treated with silica NPs. In the field experiments, silica NPs reduced the populations of all three insect pests and their associated predators, including rove beetles, as the concentration of silica NPs increased. In soybean fields, however, the total number of predators initially increased after applying the lowest concentration. An olfactometer-based choice test found that rove beetles were more likely to move towards an herbivore-infested plant treated with silica NPs than to a water-treated control, suggesting that silica NPs enhance the attraction of natural enemies via herbivore-induced plant volatiles. In the laboratory, while silica NPs inhibited the development of faba bean roots at 400 mg/L, they did not affect germination percentage, germination time, shoot length, or vigor index compared to the control.
Journal Article
Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae)
by
Tang, Qiuling
,
Gao, Xiwu
,
Hou, Youming
in
4-Butyrolactone - analogs & derivatives
,
4-Butyrolactone - toxicity
,
Agricultural practices
2019
Both inhibitory and stimulatory (known as hormesis) effects of the sublethal flupyradifurone, a butenolide insecticide, on Myzus persicae Sulzer (Hemiptera: Aphididae) were investigated for incorporating it into integrated pest management (IPM). A leaf-dip bioassay showed that flupyradifurone was very toxic against adult M. persicae with a 48 h LC50 of 8.491 mg/L. Using the age-stage two-sex life table approach, we assessed the effects of LC25 of flupyradifurone on adult M. persicae and its progeny (F1 and F2). On the one hand, aphids exposed to flupyradifurone had significantly negative effects on the life history traits acrossing the generations, such as reduced the adult longevity and fecundity of F0, shortened the duration of third instar and fourth instar nymphs, preadult period and the pre-reproductive period of F1, and decreased the reproductive days and adult longevity of F2. On the other hand, stimulatory effects on the duration of pre-adult, adult reproductive days, and reproduction of F1 were observed in the flupyradifurone-treated aphids. Consistently with the stimulation on individual traits, a higher net reproductive rate (R0) of F1 and a shorter mean generation time (T) of F2 were observed in the flupyradifurone-treated aphids, although the other population parameters including the intrinsic rate of increase (r), finite rate of increase (λ) and T of F1 and R0, r and λ of F2 were not significantly affected. These results revealed that adult M. persicae exposed to sublethal concentration of flupyradifurone can induce hormetic effects on F1, and also cause negative effects on F2. Our results would be useful for assessing the overall effects of flupyradifurone on M. persicae and the hormetic effects should take into consideration when use flupyradifurone for control M. persicae.
Journal Article
Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism
by
Hall, Tannice A.
,
Vellichirammal, Neetha Nanoth
,
Gupta, Purba
in
Animals
,
Aphididae
,
Aphids - drug effects
2017
The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.
Journal Article
The Role of Heavy Metals in Plant Response to Biotic Stress
by
Woźniak, Agnieszka
,
Rucińska-Sobkowiak, Renata
,
Jeandet, Philippe
in
Animals
,
Aphids - drug effects
,
biotic stressors
2018
The present review discusses the impact of heavy metals on the growth of plants at different concentrations, paying particular attention to the hormesis effect. Within the past decade, study of the hormesis phenomenon has generated considerable interest because it was considered not only in the framework of plant growth stimulation but also as an adaptive response of plants to a low level of stress which in turn can play an important role in their responses to other stress factors. In this review, we focused on the defence mechanisms of plants as a response to different metal ion doses and during the crosstalk between metal ions and biotic stressors such as insects and pathogenic fungi. Issues relating to metal ion acquisition and ion homeostasis that may be essential for the survival of plants, pathogens and herbivores competing in the same environment were highlighted. Besides, the influence of heavy metals on insects, especially aphids and pathogenic fungi, was shown. Our intention was also to shed light on the relationship between heavy metals deposition in the environment and ecological communities formed under a strong selective pressure.
Journal Article
The genome of Diuraphis noxia, a global aphid pest of small grains
by
Nicholson, Scott J
,
Kim, Changhoon
,
Song, Yan
in
Animal Genetics and Genomics
,
Animals
,
Aphids - classification
2015
Background
The Russian wheat aphid,
Diuraphis noxia
Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding.
Results
We sequenced and
de novo
assembled the genome of
D. noxia
Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes.
D. noxia
has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(
O/E
) distribution and a complete set of methylation related genes. The
D. noxia
genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the
Acyrthosiphon pisum
genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known
D. noxia
salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in
D. noxia
saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although
D. noxia
is not a viral vector.
Conclusions
This genome is the second sequenced aphid genome, and the first of a phytotoxic insect.
D. noxia
’s reduced gene content of may reflect the influence of phytotoxic feeding in shaping the
D. noxia
genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The
D. noxia
genome will provide an important contrast to the
A. pisum
genome and advance functional and comparative genomics of insects and other organisms.
Journal Article
Hesperidin as a Species-Specific Modifier of Aphid Behavior
2024
Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.
Journal Article
Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae
by
Oliphant, Linda
,
Puinean, Alin M.
,
Foster, Stephen P.
in
Animals
,
Aphididae
,
Aphids - chemistry
2010
The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.
Journal Article
Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii
2020
Clothianidin is a second-generation neonicotinoid insecticide, widely used against sap-sucking insect pest including melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). This pest causes severe economic damage to Cucurbitaceae plants worldwide. In this study, we investigated clothianidin resistance development under continuous selection pressure. Moreover, the age-stage, two-sex life table approach was used to evaluate the impact of clothianidin resistance on the fitness of A. gossypii. A clothianidin resistant strain (CT-R) with a 23.17-fold resistance level was developed from a susceptible strain (CT-S) after continuous selection for 24 generations. Life table results showed a significant reduction in the relative fitness (0.847) of CT-R strain compared to the CT-S strain of A. gossypii. The developmental duration, oviposition days, total pre-oviposition period (TPOP), longevity, and fecundity of CT-R strain were found to be significantly lower when compared to CT-S strain. The demographic parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and mean generation time (T) were also significantly decreased in CT-R strain compared to the CT-S strain. Both the reproductive and survival rates were affected by clothianidin resistance in CT-R strain compared with the CT-S strain of A. gossypii. Overall, our results demonstrate that in-depth knowledge about the trade-off at play between resistance degree and fitness cost might be useful to design resistance management strategies against A. gossypii.
Journal Article
Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines
2015
The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L⁻¹) and two sublethal (0.05 and 0.10 mg L⁻¹) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L⁻¹imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R₀) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.
Journal Article
Comparison of absorption and excretion of test compounds in sucking versus chewing pests
2025
A critical understanding of how pests interact with active ingredients is essential for the development of new insect control solutions to maintain crop quality and quantity by reducing insect damage. Absorption of insecticides into insect bodies of targeted pest species is the first critical step that confounds the efficacy of insecticides. This study investigated how different feeding behaviour of two pests, Myzus persicae and Spodoptera littoralis , affects the absorption, metabolism, and excretion (AME) of seven insecticidally inactive test compounds. A feeding contact assay for the chewing pest (Lepidopteran larvae) and an oral ingestion assay for the sucking pest (aphids) was used to investigate the AME of test compounds with agrochemical-like structural motifs. The standardized assays comprised of an exposure period with treated diet and a subsequent depuration period with untreated diet. The results showed that S. littoralis larvae differed from M. persicae in their compound quantities absorbed into the insect body and in their excretion products at the end of the exposure or depuration periods. We suggest that this is caused by their different ingestion types and rates resulting in different absorption and excretion quantities. Further, we found differences in the metabolism (timing and biotransformation pathways) of compounds between both species. Notably, certain compounds remained detectable in both pests after the depuration period, suggesting compound and species-specific metabolism and excretion. Our results highlight the complex interplay between feeding biology of insects, in particular the critical role of excretion products, and the exposure to different compounds that lead to species-specific AME.
Journal Article