Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,152 result(s) for "Apoidea"
Sort by:
Genomic signatures of evolutionary transitions from solitary to group living
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Completeness analysis for over 3000 United States bee species identifies persistent data gap
Native bee species in the United States provide invaluable pollination services. Concerns about native bee declines are growing, and there are calls for a national monitoring program. Documenting species ranges at ecologically meaningful scales through coverage completeness analysis is a fundamental step to track bees from species to communities. It may take decades before all existing bee specimens are digitized, so projections are needed now to focus future research and management efforts. From 1.923 million records, we created range maps for nearly 88% (3158 species) of bee species in the contiguous United States, provided the first analysis of inventory completeness for digitized specimens of a major insect clade, and perhaps most important, estimated spatial completeness accounting for all known bee specimens in USA collections, including undigitized bee specimens. Completeness analyses were very low (3–37%) across four examined spatial resolutions when using the currently available bee specimen records. Adding a subset of observations from community science data sources did not significantly increase completeness, and adding a projected 4.7 million undigitized specimens increased completeness by only an additional 12–13%. Assessments of data, including projected specimen records, indicate persistent taxonomic and geographic deficiencies. In conjunction with expedited digitization, new inventories that integrate community science data with specimen‐based documentation will be required to close these gaps. A combined effort involving both strategic inventories and accelerated digitization campaigns is needed for a more complete understanding of USA bee distributions.
Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera
Stingless bees (Meliponini) are a ubiquitous and diverse element of the pantropical melittofauna, and have significant cultural and economic importance. This review outlines their diversity, and provides identification keys based on external morphology, brief accounts for each of the recognized genera, and an updated checklist of all living and fossil species. In total there are currently 605 described extant species in 45 extant genera, and a further 18 extinct species in nine genera, seven of which are extinct. A new fossil genus, Adactylurina Engel, gen. nov. , is also described for a species in Miocene amber from Ethiopia. In addition to the systematic review, the biology of stingless bees is summarized with an emphasis on aspects related to their nesting biology and architecture.
Flower plantings increase wild bee abundance and the pollination services provided to a pollination‐dependent crop
Pollination services from wild insects contribute to crop productivity around the world, but are at risk of decline in agricultural landscapes. Using highbush blueberry as a model system, we tested whether wildflower plantings established adjacent to crop fields would increase the abundance of wild pollinators during crop bloom and enhance pollination and yield. Plantings were seeded in 2009 with a mix of 15 perennial wildflower species that provided season‐long bloom and increased plant density and floral area during the subsequent 3 years. Honeybees visiting blueberry flowers had similar abundance in enhanced and control fields in all 4 years of this study, whereas wild bee and syrphid abundance increased annually in the fields adjacent to wildflower plantings. Crop pollination parameters including percentage fruit set, berry weight and mature seeds per berry were significantly greater in fields adjacent to wildflower plantings 3 and 4 years after seeding, leading to higher crop yields and with the associated revenue exceeding the cost of wildflower establishment and maintenance. Synthesis and applications. We suggest that provision of forage habitat for bees adjacent to pollinator‐dependent crops can conserve wild pollinators in otherwise resource‐poor agricultural landscapes. Over time, these plantings can support higher crop yields and bring a return on the initial investment in wildflower seed and planting establishment, also insuring against loss of managed pollinators. Further understanding of the importance of planting size, location and landscape context will be required to effectively implement this practice to support crop pollination.
Climate-associated phenological advances in bee pollinators and bee-pollinated plants
The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.
Rapid behavioral maturation accelerates failure of stressed honey bee colonies
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. Significance Honey bee colony death rates are unsustainably high. While many stressors have been identified that contribute to this problem, we do not know why colonies transition so rapidly from a state of apparent health to failure. It is well known that individual bees react to nutritional and pathogen stresses by foraging precociously: our study explains how colony failure arises from the social responses of individual bees to stress. We used radio tracking to monitor performance of bees and found that workers who begin foraging prematurely perform very poorly. This compounds the stresses on the colony and accelerates failure. We suggest how colonies at risk can be identified early, and the most effective interventions to prevent failure.
Phylogenomic analysis of Apoidea sheds new light on the sister group of bees
Background Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families. Results Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family “Crabronidae”, which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees. Conclusion By combining transcriptomic sequences with those obtained via target DNA enrichment, we were able to include an unprecedented large number of apoid wasps in a phylogenetic study for tracing the phylogenetic origin of bees. Our results confirm the polyphyletic nature of the former wasp family Crabonidae, which we here suggest splitting into eight families. Of these, the family Ammoplanidae possibly represents the extant sister lineage of bees. Species of Ammoplanidae are known to hunt thrips, of which some aggregate on flowers and feed on pollen. The specific biology of Ammoplanidae as predators indicates how the transition from a predatory to pollen-collecting life style could have taken place in the evolution of bees. This insight plus the finding that (eu)social societies evolved exclusively in a single subordinated lineage of apoid wasps provides new perspectives for future comparative studies.
Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. Significance Growing concern about bee declines and associated loss of pollination services has increased the urgency to identify the underlying causes. So far, the identification of the key drivers of decline of bee populations has largely been based on speculation. We assessed the relative importance of a range of proposed factors responsible for wild bee decline and show that loss of preferred host plant species is one of the main factors associated with the decline of bee populations in The Netherlands. Interestingly, species foraging on crop plant families have stable or increasing populations. These results indicate that mitigation strategies for loss of wild bees will only be effective if they target the specific host plants of declining bee species.
Using citizen science data to compare flight phenology of two oligolectic bees (Hymenoptera: Andrenidae) with the flowering of their host plants
Understanding the relationship between solitary bee flight and flowering phenology is globally relevant for environmental management and habitat restoration. Using Swedish citizen science data over an 11 -year period, the fl ight behaviours of two oligolectic solitary bees (Andrena hattorfiana and Andrena marginata) were compared to the flowering phenology of their hosts (Knautia arvensis and Succisa pratensis) in southern Sweden. There were 2,327 and 4,566 records of fl ight and fl owering, respectively. While associative studies cannot resolve the degree of oligolecty, a strong temporal association of Andrena hattorfiana with Knautia arvensis and Andrena marginata with Succisa pratensis was indicated. Three conclusions emerged when comparing annual data: first, the flight period of both bee species studied overlapped with the flowering period of their corresponding host plants. Second, earlier fl owering of Knautia arvensis corresponded with the earlier fl ight of Andrena hattorfiana. Third, the fl ight period duration was unaffected by the flowering period duration. For Andrena hattorfiana/Knautia arvensis, climate change may shift the start of fl ight and fl owering periods to earlier dates in the year. A similar response would be expected for Andrena marginata/Knautia arvensis, but not for Andrena marginata/Succisa pratensis where there instead might be an increasing mismatch between the fl ight and fl owering periods.
Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees
Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.