Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25,226
result(s) for
"Apolipoproteins"
Sort by:
Apolipoprotein E controls cerebrovascular integrity via cyclophilin A
by
Holtzman, David M.
,
Betsholtz, Christer
,
Sallstrom, Jan
in
631/378/340
,
631/443/592/75/593/1370
,
631/45/612/1191
2012
The APOE4-mediated proinflammatory pathway is shown to initiate blood–brain barrier breakdown and resulting neurodegeneration in transgenic mice.
Restoring the blood–brain barrier
There are known connections between the Alzheimer's-disease-linked
APOE4
gene and cerebrovascular integrity. However, the mechanisms that drive known blood–brain-barrier dysfunction both in rodent models and in APOE4-associated neurological disorders are unknown. Here, Berislav Zlokovic and colleagues report that APOE4 activates a matrix metalloproteinase pathway in cells forming the blood–brain barrier in mice, leading to its breakdown and the neuronal uptake of blood-derived neurotoxic proteins. In turn, microvascular and cerebral blood flow are reduced; together, these deficits can initiate neurodegenerative changes in rodents. The authors suggest that cyclophilin A (CypA), a component of the APOE4-activated pathway, is a potential target for treating APOE4-mediated neuronal dysfunction. Treatment with the CypA inhibitor cyclosporine A restores the blood–brain barrier in
APOE4
mice.
Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE4
1
.
APOE4
is a major genetic risk factor for Alzheimer’s disease
2
,
3
and is associated with Down’s syndrome dementia and poor neurological outcome after traumatic brain injury and haemorrhage
3
. Neurovascular dysfunction is present in normal
APOE4
carriers
4
,
5
,
6
and individuals with
APOE4
-associated disorders
3
,
7
,
8
,
9
,
10
. In mice, lack of
Apoe
leads to blood–brain barrier (BBB) breakdown
11
,
12
, whereas
APOE4
increases BBB susceptibility to injury
13
. How
APOE
genotype affects brain microcirculation remains elusive. Using different APOE transgenic mice, including mice with ablation and/or inhibition of cyclophilin A (CypA), here we show that expression of APOE4 and lack of murine Apoe, but not APOE2 and APOE3, leads to BBB breakdown by activating a proinflammatory CypA–nuclear factor-κB–matrix-metalloproteinase-9 pathway in pericytes. This, in turn, leads to neuronal uptake of multiple blood-derived neurotoxic proteins, and microvascular and cerebral blood flow reductions. We show that the vascular defects in
Apoe-
deficient and
APOE4
-expressing mice precede neuronal dysfunction and can initiate neurodegenerative changes. Astrocyte-secreted APOE3, but not APOE4, suppressed the CypA–nuclear factor-κB–matrix-metalloproteinase-9 pathway in pericytes through a lipoprotein receptor. Our data suggest that CypA is a key target for treating APOE4-mediated neurovascular injury and the resulting neuronal dysfunction and degeneration.
Journal Article
Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls
2014
The apolipoprotein E (ApoE) ε4 allele is the strongest risk factor of sporadic Alzheimer’s disease (AD), however, the fluid concentrations of ApoE and its different isoforms (ApoE2, ApoE3 and ApoE4) in AD patients and among APOE genotypes (
APOE
ε2, ε3, ε4) remain controversial. Using a novel mass spectrometry-based method, we quantified total ApoE and specific ApoE isoform concentrations and potential associations with age, cognitive status, cholesterol levels and established AD biomarkers in cerebrospinal fluid (CSF) from AD patients versus non-AD individuals with different
APOE
genotypes. We also investigated plasma total ApoE and ApoE isoform composition in a subset of these individuals. In total
n
= 43 AD and
n
= 43 non-AD subjects were included. We found that CSF and plasma total ApoE levels did not correlate with age or cognitive status and did not differ between AD and non-AD subjects deeming ApoE as an unfit diagnostic marker for AD. Also, whereas CSF ApoE levels did not vary between
APOE
genotypes
APOE
ε4 carriers exhibited significantly decreased plasma ApoE levels attributed to a specific decrease in the ApoE4 isoform concentrations. CSF total ApoE concentrations were positively associated with CSF, total tau, tau phosphorylated at Thr181 and Aβ1-42 of which the latter association was weaker and only present in
APOE
ε4 carriers indicating a differential involvement of ApoE in tau versus Aβ-linked neuropathological processes. Future studies need to elucidate whether the observed plasma ApoE4 deficiency is a life-long condition in
APOE
ɛ4 carriers and whether this decrease in plasma ApoE predisposes A
POE
ɛ4 carriers to AD.
Journal Article
Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis
2020
Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD.
We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components.
These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Journal Article
Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease
by
Liu, Chia-Chen
,
Ikezu, Tadafumi C.
,
Wang, Minghui
in
631/250
,
631/80
,
Alzheimer Disease - genetics
2023
Microglial involvement in Alzheimer’s disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (
APOE
) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in
APOE4
human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.
Liu and colleagues find differential effects of microglial apoE isoforms on brain function and microglial responses. ApoE3 enhances microglial responses, promoting brain function and reducing amyloid deposition and associated neurotoxicity, while the Alzheimer’s disease-associated apoE4 results in lipid droplet accumulation and impaired microglial responses, which are critical for limiting the development of amyloid pathology.
Journal Article
Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake
by
Brown, Alexandria C.
,
Yaniv, Karina
,
Otis, Jessica P.
in
Animals
,
Apolipoprotein A-I
,
Apolipoprotein A-IV
2015
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Journal Article
Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles
by
Wakita, Takaji
,
Yamamoto, Satomi
,
Wada, Masami
in
Apolipoproteins
,
Apolipoproteins A - physiology
,
Apolipoproteins B - chemistry
2014
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.
Journal Article
ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy
2017
ApoE4 exacerbates tau pathogenesis, neuroinflammation and tau-mediated neurodegeneration independently of brain amyloid-β pathology, and exerts a ‘toxic’ gain of function whereas its absence is protective.
Alzheimer's risk factor aggravates tau pathology
APOE4
is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology compared to other ApoE isoforms. However, whether
APOE
independently influences tau pathology is not clear. David Holtzman and colleagues now show that ApoE4 exacerbates tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independent of amyloid-β pathology. ApoE4 exerts a 'toxic' gain of function, whereas the absence of ApoE is protective.
APOE4
is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms
1
. However, whether
APOE
independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes.
In vitro
, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an
ε4
allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology,
ε4
-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-β pathology. ApoE4 exerts a ‘toxic’ gain of function whereas the absence of ApoE is protective.
Journal Article
Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease
2021
APOE and Trem2 are major genetic risk factors for Alzheimer’s disease (AD), but how they affect microglia response to Aβ remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human
APOEε3/3
and
APOEε4/4
AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aβ, facilitate Aβ uptake, and ameliorate Aβ effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aβ uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aβ mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.
Microglia can clear amyloid plaques in Alzheimer’s disease. Here, the authors show that specific isoforms of the phospholipid forming APOE lipoproteins activate microglia in pre-clinical mouse models of Alzheimer’s disease.
Journal Article
APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases
by
Gouras, Gunnar K.
,
Venero, José Luís
,
Deierborg, Tomas
in
Advertising executives
,
Alzheimer Disease - metabolism
,
Alzheimer's disease
2022
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of
APOE4
is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how
APOE's
single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how
APOE's
polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell–cell communication. We discuss influential factors affecting AD pathology combined with the
APOE
genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the
APOE
genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the
APOE
genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the
APOE
field.
Journal Article
Effect of Apolipoprotein E isoforms on the Abundance and Function of P-glycoprotein in Human Brain Microvascular Endothelial Cells
by
Kreutzer, Ethan
,
Nicolazzo, Joseph A
,
Short, Jennifer L
in
Alzheimer's disease
,
Apolipoprotein E
,
Apolipoprotein E4
2024
BackgroundIndividuals with Alzheimer’s disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model.MethodsThis study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 – 10 µg/mL over 24 – 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms.ResultsP-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively.ConclusionsDifferent apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.
Journal Article