Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Approximated inference"
Sort by:
Improving the Welch-Satterthwaite Approximation
TheWelch-Satterthwaite (WS) methodology is typically used in medicine, biology and economic courses to make inferences about the difference between two population means. Despite his wide-spreading applications, it has been pointing out in many references the multiple limitations of the inferences based on it. In this work, we propose three simple ways to improve the classical WS approach. Under balanced samples scenarios, we give exact inference results of two of the proposed estimators. Additionally, under unbalanced samples scenarios, we offer first-order approximation results and through several Monte Carlo simulations, we assess the mean and variance of the proposed estimators under (very) small and moderate sample sizes. Nonetheless, the simplicity of the proposed approach we obtain a much better performance than the WS proposal. Lastly, one application is presented in which the proposed estimators potentially improve the performance of t-student interval estimation and hypothesis testing procedures. La metodología de Welch-Satterthwaite (WS) se utiliza típicamente en medicina, biología y economía para realizar inferencias sobre la diferencia entre dos medias poblacionales. A pesar de su amplia aplicación, se ha señalado en numerosas referencias las múltiples limitaciones de las inferencias basadas en esta metodología. En este trabajo, proponemos tres maneras sencillas de mejorar el enfoque clásico de WS. En escenarios de muestras balanceadas, proporcionamos resultados de inferencia exactos de dos de los estimadores propuestos. Además, en escenarios con muestras no balanceadas, ofrecemos resultados de aproximación de primer orden y mediante simulación Monte Carlo, evaluamos la media y la varianza de los estimadores propuestos con tamaños de muestra (muy) pequeños y moderados. No obstante, gracias a la simplicidad del enfoque propuesto, obtenemos un rendimiento mucho mejor que la propuesta de WS. Finalmente, se presenta una aplicación en la que los estimadores propuestos mejoran potencialmente el rendimiento de la estimación del intervalo t-Student y los procedimientos de prueba de hipótesis.
Stochastic image spectroscopy: a discriminative generative approach to hyperspectral image modelling and classification
This paper introduces a new latent variable probabilistic framework for representing spectral data of high spatial and spectral dimensionality, such as hyperspectral images. We use a generative Bayesian model to represent the image formation process and provide interpretable and efficient inference and learning methods. Surprisingly, our approach can be implemented with simple tools and does not require extensive training data, detailed pixel-by-pixel labeling, or significant computational resources. Numerous experiments with simulated data and real benchmark scenarios show encouraging image classification performance. These results validate the unique ability of our framework to discriminate complex hyperspectral images, irrespective of the presence of highly discriminative spectral signatures.