Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,968
result(s) for
"Aquaporins - chemistry"
Sort by:
Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins
by
Werin, Balder
,
Wendler, Markus
,
Hagströmer, Carl Johan
in
Analysis
,
Aquaporin 2 - chemistry
,
Aquaporin 2 - metabolism
2024
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Journal Article
Structural Basis for Mutations of Human Aquaporins Associated to Genetic Diseases
by
Vangone, Anna
,
Oliva, Romina
,
D’Auria, Gabriella
in
Amino Acid Sequence
,
Aquaporin 2 - chemistry
,
Aquaporin 2 - genetics
2018
Aquaporins (AQPs) are among the best structural-characterized membrane proteins, fulfilling the role of allowing water flux across cellular membranes. Thus far, 34 single amino acid polymorphisms have been reported in HUMSAVAR for human aquaporins as disease-related. They affect AQP2, AQP5 and AQP8, where they are associated with nephrogenic diabetes insipidus, keratoderma and colorectal cancer, respectively. For half of these mutations, although they are mostly experimentally characterized in their dysfunctional phenotypes, a structural characterization at a molecular level is still missing. In this work, we focus on such mutations and discuss what the structural defects are that they appear to cause. To achieve this aim, we built a 3D molecular model for each mutant and explored the effect of the mutation on all of their structural features. Based on these analyses, we could collect the structural defects of all the pathogenic mutations (here or previously analysed) under few main categories, that we found to nicely correlate with the experimental phenotypes reported for several of the analysed mutants. Some of the structural analyses we present here provide a rationale for previously experimentally observed phenotypes. Furthermore, our comprehensive overview can be used as a reference frame for the interpretation, on a structural basis, of defective phenotypes of other aquaporin pathogenic mutants.
Journal Article
Narrowed pore conformations of aquaglyceroporins AQP3 and GlpF
2025
Aquaglyceroporins such as aquaporin−3 (AQP3) and its bacterial homologue GlpF facilitate water and glycerol permeation across lipid bilayers. X-ray crystal structures of GlpF showed open pore conformations, and AQP3 has also been predicted to adopt this conformation. Here we present cryo-electron microscopy structures of rat AQP3 and GlpF in different narrowed pore conformations. In
n
-dodecyl-β-D-maltopyranoside detergent micelles, aromatic/arginine constriction filter residues of AQP3 containing Tyr212 form a 2.8-Å diameter pore, whereas in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) nanodiscs, Tyr212 inserts into the pore. Molecular dynamics simulation shows the Tyr212-in conformation is stable and largely suppresses water permeability. AQP3 reconstituted in POPC liposomes exhibits water and glycerol permeability, suggesting that the Tyr212-in conformation may be altered during permeation. AQP3 Y212F and Y212T mutant structures suggest that the aromatic residue drives the pore-inserted conformation. The aromatic residue is conserved in AQP7 and GlpF, but neither structure exhibits the AQP3-like conformation in POPC nanodiscs. Unexpectedly, the GlpF pore is covered by an intracellular loop, but the loop is flexible and not primarily related to the GlpF permeability. Our findings illuminate the unique AQP3 conformation and structural diversity of aquaglyceroporins.
The aquaglyceroporin channels AQP3, AQP7, and GlpF permeate water and glycerol, but the structural diversity remains unclear. Here, authors present the AQP3-specific conformation in which a selective filter residue tyrosine is inserted into the pore.
Journal Article
PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore
by
Ren, Tingwei
,
Aksimentiev, Aleksei
,
Maranas, Costas D.
in
631/114
,
631/114/469
,
631/45/612/1237
2018
Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to implement in synthetic industrial membranes and have modest selectivity without tunable selectivity. Here we present PoreDesigner, a design workflow to redesign the robust beta-barrel Outer Membrane Protein F as a scaffold to access three specific pore designs that exclude solutes larger than sucrose (>360 Da), glucose (>180 Da), and salt (>58 Da) respectively. PoreDesigner also enables us to design any specified pore size (spanning 3–10 Å), engineer its pore profile, and chemistry. These redesigned pores may be ideal for conducting sub-nm aqueous separations with permeabilities exceeding those of classical biological water channels, aquaporins, by more than an order of magnitude at over 10 billion water molecules per channel per second.
Monodisperse angstrom-sized membrane proteins, found in biological membranes, are difficult to implement in synthetic industrial membranes. Here authors present a pore design procedure, to redesign the robust beta-barrel Outer Membrane Protein F (OmpF) with specific solute selectivity.
Journal Article
Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei
by
O'Neill, Paul
,
Paape, Daniel
,
Woodley, Christopher M
in
Animals
,
aquaporin
,
Aquaporin 2 - chemistry
2020
Mutations in the
Trypanosoma brucei
aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2’s unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.
African sleeping sickness is a potentially deadly illness caused by the parasite
Trypanosoma brucei
. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated.
Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular ‘drain pipe’ extends through the surface of
T. brucei
, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in
T. brucei
, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then ‘hitch a ride’ when the protein is taken into the parasite as part of the natural cycle of surface protein replacement.
Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in
T. brucei
, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of
T. brucei
. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant.
This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.
Journal Article
Mechanism of selectivity in aquaporins and aquaglyceroporins
2008
Aquaporins and aquaglyceroporins form a family of pore proteins that facilitate the efficient and selective flux of small solutes across biological membranes. We studied the selectivity of aquaporin-1 (AQP1) and the bacterial glycerol facilitator, GlpF, for O₂, CO₂, NH₃, glycerol, urea, and water. Using molecular dynamics simulations, we calculated potentials of mean force for solute permeation along the aquaporin channels and compared them with the alternative pathway across the lipid bilayer. For small solutes permeating through AQP1, a remarkable anticorrelation between permeability and solute hydrophobicity was observed, whereas the opposite trend was observed for permeation through the membrane. This finding renders AQP1 a selective filter for small polar solutes, whereas GlpF was found to be highly permeable for small solutes and permeable for larger solutes. Surprisingly, not solute-channel but water-channel interactions were found to be the key determinant underlying the selectivity mechanism of aquaporins. Hence, a hydrophobic effect, together with steric restraints, determines the selectivity of aquaporins.
Journal Article
Structural determinants of water permeation through aquaporin-1
by
Murata, Kazuyoshi
,
Hirai, Teruhisa
,
Mitsuoka, Kaoru
in
Amino Acid Sequence
,
Amino acids
,
Anatomy & physiology
2000
Human red cell AQP1 is the first functionally defined member of the aquaporin family of membrane water channels. Here we describe an atomic model of AQP1 at 3.8 Å resolution from electron crystallographic data. Multiple highly conserved amino-acid residues stabilize the novel fold of AQP1. The aqueous pathway is lined with conserved hydrophobic residues that permit rapid water transport, whereas the water selectivity is due to a constriction of the pore diameter to about 3 Å over a span of one residue. The atomic model provides a possible molecular explanation to a longstanding puzzle in physiology—how membranes can be freely permeable to water but impermeable to protons.
Journal Article
Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches
by
Paccetti-Alves, Inês
,
Pimpão, Catarina
,
Soveral, Graça
in
Angiogenesis
,
Antioxidants
,
Aquaporin 3 - chemistry
2023
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Journal Article
Structural Basis for Conductance by the Archaeal Aquaporin AqpM at 1.68 Å
by
Stroud, Robert M.
,
Kozono, David
,
Remis, Jonathan
in
Amino Acid Sequence
,
Aquaglyceroporins
,
Aquaporins
2005
To explore the structural basis of the unique selectivity spectrum and conductance of the transmembrane channel protein AqpM from the archaeon Methanothermobacter marburgensis, we determined the structure of AqpM to 1.68-Å resolution by x-ray crystallography. The structure establishes AqpM as being in a unique subdivision between the two major subdivisions of aquaporins, the water-selective aquaporins, and the water-plus-glycerol-conducting aquaglyceroporins. In AqpM, isoleucine replaces a key histidine residue found in the lumen of water channels, which becomes a glycine residue in aquaglyceroporins. As a result of this and other side-chain substituents in the walls of the channel, the channel is intermediate in size and exhibits differentially tuned electrostatics when compared with the other subfamilies.
Journal Article
Presence of Intra-helical Salt-Bridge in Loop E Half-Helix Can Influence the Transport Properties of AQP1 and GlpF Channels: Molecular Dynamics Simulations of In Silico Mutants
by
Verma, Ravi Kumar
,
Sankararamakrishnan, Ramasubbu
,
Jain, Alok
in
Aquaporin 1
,
Arginine
,
Bioinformatics
2019
Major intrinsic protein (MIP) superfamily contains water-transporting AQP1 and glycerol-specific GlpF belonging to two major phylogenetic groups, namely aquaporins (AQPs) and aquaglyceroporins (AQGPs). MIP channels have six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). LE region contributes two residues to the aromatic/arginine (Ar/R) selectivity filter (SF) within the MIP channel. Bioinformatics analyses have shown that all AQGPs have an intra-helical salt-bridge (IHSB) in LE half-helix and all AQGPs and majority of AQPs have helix destabilizing Gly and/or Pro in the same region. In this paper, we mutated in silico the acidic and basic residues in GlpF to Ser and introduced salt-bridge interaction in AQP1 LE half-helix by substituting Ser residues at the equivalent positions with acidic and basic residues. We investigated the influence of IHSB in LE half-helix on the transport properties of GlpF and AQP1 mutant channels using molecular dynamics simulations. With IHSB abolished in LE half-helix, the GlpF mutant exhibited a significantly reduced water transport. In contrast, the introduction of IHSB in the two AQP1 mutants has increased water transport. Absence of salt-bridge in LE half-helix alters the SF geometry and results in a higher energy barrier for the solutes in the Ar/R selectivity filter. Presence/absence of IHSB in LE half-helix influences the channel transport properties and it is evident especially for the AQGPs. By modulating its helical flexibility, LE half-helix can perhaps play a regulatory role in transport either on its own or in conjunction with other extracellular regions.
Journal Article