Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,769
result(s) for
"Aquatic crustaceans"
Sort by:
From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being
2023
In this review we highlight the relevance of biodiversity that inhabit coastal lagoons, emphasizing how species functions foster processes and services associated with this ecosystem. We identified 26 ecosystem services underpinned by ecological functions performed by bacteria and other microbial organisms, zooplankton, polychaetae worms, mollusks, macro-crustaceans, fishes, birds, and aquatic mammals. These groups present high functional redundancy but perform complementary functions that result in distinct ecosystem processes. Because coastal lagoons are located in the interface between freshwater, marine and terrestrial ecosystems, the ecosystem services provided by the biodiversity surpass the lagoon itself and benefit society in a wider spatial and historical context. The species loss in coastal lagoons due to multiple human-driven impacts affects the ecosystem functioning, influencing negatively the provision of all categories of services (i.e., supporting, regulating, provisioning and cultural). Because animals’ assemblages have unequal spatial and temporal distribution in coastal lagoons, it is necessary to adopt ecosystem-level management plans to protect habitat heterogeneity and its biodiversity, ensuring the provision of services for human well-being to multi-actors in the coastal zone.
Journal Article
Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review
2024
Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin’s unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.HighlightsBeneficial use of astaxanthin as a feed supplement in cultured aquatic species.Screening of astaxanthin in pigmentation, growth and immunity enhancement, inflammatory response, and disease resistance of aquatic species.Astaxanthin prevents several diseases associated with oxidative stress in aquatic animals.
Journal Article
Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone)
by
De Queiroz Antonino, Rayane
,
Lia Fook, Bianca
,
De Farias Rached, Raid
in
Acetic acid
,
Acetylation
,
Algae
2017
The main source of commercial chitosan is the extensive deacetylation of its parent polymer chitin. It is present in green algae, the cell walls or fungi and in the exoskeleton of crustaceans. A novel procedure for preparing chitosan from shrimp shells was developed. The procedure involves two 10-minutes bleaching steps with ethanol after the usual demineralization and deproteinization processes. Before deacetylation, chitin was immersed in 12.5 M NaOH, cooled down and kept frozen for 24 h. The obtained chitosan was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV, X-ray diffraction (XRD) and viscosimetry. Samples of white chitosan with acetylation degrees below 9 % were obtained, as determined by FTIR and UV-first derivative spectroscopy. The change in the morphology of samples was followed by SEM. The ash content of chitosan samples were all below 0.063 % . Chitosan was soluble in 1 % acetic acid with insoluble contents of 0.62 % or less. XRD patterns exhibited the characteristic peaks of chitosan centered at 10 and 20 degrees in 2 θ . The molecular weight of chitosan was between 2.3 and 2.8 × 10 5 g/mol. It is concluded that the procedure developed in the present work allowed obtaining chitosans with physical and chemical properties suitable for pharmaceutical applications.
Journal Article
Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry
by
Lichtfouse, Eric
,
Crini, Grégorio
,
Torri, Giangiacomo
in
Agricultural practices
,
Agriculture
,
Agrochemicals
2019
Chitosan is a biopolymer obtained from chitin, one of the most abundant and renewable materials on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods such as crustaceans, e.g., crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget. The name of chitosan was, however, introduced in 1894 by Felix Hoppe-Seyler. Chitosan has attracted major scientific and industrial interests from the late 1970s due to its particular macromolecular structure, biocompatibility, biodegradability and other intrinsic functional properties. Chitosan and derivatives have practical applications in the food industry, agriculture, pharmacy, medicine, cosmetology, textile and paper industries, and in chemistry. In recent years, chitosan has also received much attention in dentistry, ophthalmology, biomedicine and bioimaging, hygiene and personal care, veterinary medicine, packaging industry, agrochemistry, aquaculture, functional textiles and cosmetotextiles, catalysis, chromatography, beverage industry, photography, wastewater treatment and sludge dewatering, and biotechnology. Nutraceuticals and cosmeceuticals are actually growing markets, and therapeutic and biomedical products should be the next markets in the development of chitosan. Chitosan is also the object of numerous fundamental studies. In this review, we highlight a selection of works on chitosan applications published over the past two decades.
Journal Article
Chitosan Nanoparticles-Based Cancer Drug Delivery: Application and Challenges
2023
Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.
Journal Article
Fuel use and greenhouse gas emissions of world fisheries
by
Gardner, Caleb
,
Green, Bridget S
,
Blanchard, Julia L
in
Agriculture
,
Anthropogenic factors
,
Aquatic crustaceans
2018
Food production is responsible for a quarter of anthropogenic greenhouse gas (GHG) emissions globally. Marine fisheries are typically excluded from global assessments of GHGs or are generalized based on a limited number of case studies. Here we quantify fuel inputs and GHG emissions for the global fishing fleet from 1990–2011 and compare emissions from fisheries to those from agriculture and livestock production. We estimate that fisheries consumed 40 billion litres of fuel in 2011 and generated a total of 179 million tonnes of CO2-equivalent GHGs (4% of global food production). Emissions from the global fishing industry grew by 28% between 1990 and 2011, with little coinciding increase in production (average emissions per tonne landed grew by 21%). Growth in emissions was driven primarily by increased harvests from fuel-intensive crustacean fisheries. The environmental benefit of low-carbon fisheries could be further realized if a greater proportion of landings were directed to human consumption rather than industrial uses.
Journal Article
Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review
by
Mura, Paola
,
Cirri, Marzia
,
Maestrelli, Francesca
in
Antiinfectives and antibacterials
,
Aquatic crustaceans
,
Bioavailability
2022
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Journal Article
Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment
by
Jones, Mitchell
,
Bismarck, Alexander
,
Kujundzic, Marina
in
Additives
,
Agaricales - chemistry
,
Animals
2020
Chitin and its derivative chitosan are popular constituents in wound-treatment technologies due to their nanoscale fibrous morphology and attractive biomedical properties that accelerate healing and reduce scarring. These abundant natural polymers found in arthropod exoskeletons and fungal cell walls affect almost every phase of the healing process, acting as hemostatic and antibacterial agents that also support cell proliferation and attachment. However, key differences exist in the structure, properties, processing, and associated polymers of fungal and arthropod chitin, affecting their respective application to wound treatment. High purity crustacean-derived chitin and chitosan have been widely investigated for wound-treatment applications, with research incorporating chemically modified chitosan derivatives and advanced nanocomposite dressings utilizing biocompatible additives, such as natural polysaccharides, mineral clays, and metal nanoparticles used to achieve excellent mechanical and biomedical properties. Conversely, fungi-derived chitin is covalently decorated with -glucan and has received less research interest despite its mass production potential, simple extraction process, variations in chitin and associated polymer content, and the established healing properties of fungal exopolysaccharides. This review investigates the proven biomedical properties of both fungal- and crustacean-derived chitin and chitosan, their healing mechanisms, and their potential to advance modern wound-treatment methods through further research and practical application.
Journal Article
Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review
by
Monroig, Óscar
,
Kabeya, Naoki
in
Aquatic crustaceans
,
Aquatic ecosystems
,
Aquatic invertebrates
2018
Invertebrates represent a large proportion of the biomass in aquatic ecosystems, particularly in the ocean. In recent years, invertebrates have been well-consolidated models in evolutionary developmental biology research and, consequently, genomic and transcriptomic sequence databases from a plethora of species across the animal kingdom have become available. This has provided an excellent source of evidence confirming that invertebrates operate endogenous mechanisms for PUFA production. The present paper reviews the current knowledge of gene complement and, where possible, the function of desaturases and elongases with pivotal roles in PUFA biosynthesis of aquatic invertebrates. More specifically, this review covers three major enzyme types, namely ωx desaturases, front-end desaturases and elongases, that have been characterised from species of sponges, cnidarians, molluscs, annelids, crustaceans, rotifers, echinoderms and non-vertebrate chordates (amphioxus and sea squirt). These studies have shown that invertebrates operate alternative and unusual pathways of PUFA biosynthesis involving gene families with complex phylogeny and functional diversity. Consequently, research in this area provides potentially valuable molecular tools in the form of genes that can be used in the biotechnological production of n-3 products.
Journal Article
Chitin Synthesis and Degradation in Crustaceans: A Genomic View and Application
2021
Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.
Journal Article