Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
100,016
result(s) for
"Aquatic environments"
Sort by:
Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France
2016
A risk assessment for freshwater and marine ecosystems is presented for 48 pharmaceutical compounds, belonging to 16 therapeutic classes, and prescribed in northwestern France. Ecotoxicity data were obtained on two freshwater organisms, i.e., crustacean Daphnia magna and the green algae Pseudokirchneriella subcapitata, and on two marine organisms, i.e., the crustacean Artemia salina and the diatom Skeletonema marinoi. Measured environmental concentrations (MEC), in the Orne River and sea off Merville-Franceville in the Basse-Normandie region, were compared to the predicted environmental concentrations (PEC). Predicted no-effect concentrations (PNEC) were derived from acute data for each compound. Then, a risk assessment for each compound and the mixture was performed by calculating risk quotients (RQ as PEC or MEC/PNEC ratio). Results showed that no immediate acute toxicities were expected even if some compounds displayed strong toxicities at very low concentrations. Antibiotics, antidepressants, and antifungals would deserve attention because of their high or median ecological risk suspected on marine and freshwater ecosystems. Marine ecosystems would be more sensitive to pharmaceutical residues.
Journal Article
Are We Underestimating Microplastic Contamination in Aquatic Environments?
by
Christian D Báez Del Valle
,
Conkle, Jeremy L
,
Turner, Jeffrey W
in
Aquatic environment
,
Consumer products
,
Contamination
2018
Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most (~80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g−1 of product or 1649 to 31,266 particles g−1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.
Journal Article
Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon
by
Aleynik, D.
,
Çagatay, M. N.
,
Mazlumyan, S.
in
Analysis
,
Anthropogenic factors
,
Aquatic environment
2014
In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (\"In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies\", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
Journal Article
Global research hotspots and trends on microplastics: a bibliometric analysis
by
Uogintė, Ieva
,
Davtalab, Mehri
,
Byčenkienė, Steigvilė
in
Aquatic environment
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2023
In recent years, microplastics have become an integral part of the terrestrial and aquatic environments, which is one of the major concerns of communities around the world. Therefore, it is necessary to know the current status of studies and feasible potentials in the future. This study, conducted an in-depth bibliometric analysis of publications from 1990 to 2022 to present the influential countries, authors, institutes, papers, and journals on microplastics. Findings reveal that there has been a steady increase in microplastic publications and citations in recent years. And, the number of publications and citations has increased 19 and 35 times since 2015. Besides, we performed a comprehensive keyword analysis to show the significant keywords and clusters in this field. In particular, this study used the TF-IDF method as a text-mining analysis to extract the new keywords used in recent years (i.e., 2020–2022). New keywords can draw the attention of scholars to important issues and provide a basis for future research directions.
Journal Article
Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends
by
Morrás, Héctor
,
Allegrini, Marco
,
Erijman, Leonardo
in
Agricultural management
,
Aquatic ecosystems
,
Aquatic environment
2022
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Journal Article
Occurrence, distribution, and possible sources of microplastics in the surface river water in the Arakawa River watershed
by
Yamada, Yojiro
,
Sankoda, Kenshi
in
Anthropogenic factors
,
Aquatic environment
,
Aquatic Pollution
2021
Nowadays, efforts for complementing data concerning microplastics (MPs) in freshwater systems are required as MPs exist in many populated areas. The goal of this study is to investigate the distribution and profiles of riverine MPs along the Arakawa River watershed, which runs through the Tokyo Metropolitan area. The MPs were found in 10 of the 12 sampling sites in the watershed with the mean of 1.8 pieces/m
3
. Also, the spatial distribution of the MPs displayed the accumulation in the downstream and in the tributary areas with high populations, reflecting the levels of the local anthropogenic activities. In contrast to the heterogeneity of the floating concentrations, polymer type compositions were consistent with the predominance of polyethylene compared with polypropylene and polystyrene. Moreover, the size distributions of the particles were consistent among samples with the predominance of the relatively smaller size fractions. These results suggest that the sources of fragmented plastic debris are likely spread over terrestrial areas and that reducing burden from these land-based MPs is necessary for mitigating MPs pollution in urban aquatic environments.
Journal Article
Ocean Warming and Spread of Pathogenic Vibrios in the Aquatic Environment
by
Pruzzo, Carla
,
Colwell, Rita R.
,
Vezzulli, Luigi
in
Animals
,
Aquatic environment
,
Aquatic environments
2013
Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.
Journal Article
Assessing eDNA capture method from aquatic environment to optimise recovery of human mt-eDNA
by
Tuohey, Kate
,
Durdle, Annalisa
,
Dass, Marie Antony
in
Aquatic environment
,
Aquatic environments
,
Aquatic forensic
2024
Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.
[Display omitted]
•5 µm filter pore size is preferable for capturing eDNA from human blood in freshwater.•8 µm filter pore is more suitable for capturing human skin cells in freshwater.•Amount of eDNA from human blood and skin cells in freshwater is reduced over time.•Filter sizes of 8 µm, 5 µm, and 1.2 µm filters recommended for unknown eDNA source.
Journal Article
Viral and microbial community dynamics in four aquatic environments
by
Desnues, Christelle
,
Nulton, Jim
,
Furlan, Mike
in
631/158/1745
,
631/326/171/1878
,
631/326/596/2142
2010
The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.
Journal Article
An illustrated guide of subfossil Chironomidae (Insecta: Diptera) from waterbodies of Central America and the Yucatan Peninsula
2022
We provide a photographic guide and taxonomic diagnosis of Chironomidae larval remains obtained from surface sediments and short cores of 92 waterbodies situated on the Yucatan Peninsula and in Central America, namely Mexico, Belize, Guatemala, El Salvador and Honduras. A total of 101 morphotypes belonging to 64 genera were identified. Chironominae was the most species-rich subfamily represented by 57 morphotypes of 34 genera. The most widespread and abundant genus was Goeldichironomus followed by Chironomus and Polypedilum. Orthocladiinae were represented by 26 morphotypes and 17 genera, with the most common one being Cricotopus. Remains of this subfamily were recorded in only 15 of the surveyed lakes. Tanypodinae included 17 morphotypes belonging to 12 genera. Labrundinia along with Ablabesmyia and Coelotanypus were the most common genera. Subfamily Podonominae was represented by the genus Parochlus. We believe that our study includes most of the Chironomidae genera of Central America and will have broad applicability for both paleolimnologists and aquatic ecologists.
Journal Article