Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
503
result(s) for
"Arabidopsis Proteins - antagonists "
Sort by:
A calmodulin-gated calcium channel links pathogen patterns to plant immunity
2019
Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown
1
,
2
. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins,
CNGC2
and
CNGC4
, are essential for PAMP-induced calcium signalling in
Arabidopsis
3
–
7
. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together—but neither alone—assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium
8
–
10
. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.
The cyclic nucleotide-gated channel proteins CNGC2 and CNGC4 form a calcium channel in Arabidopsis; this channel is blocked by calmodulin in the resting state but is phosphorylated and activated upon pathogen attack, triggering an increase in cytosolic calcium levels.
Journal Article
Auxin Activates the Plasma Membrane H⁺-ATPase by Phosphorylation during Hypocotyl Elongation in Arabidopsis
by
Takahashi, Koji
,
Kinoshita, Toshinori
,
Hayashi, Ken-ichiro
in
Adenosine triphosphatases
,
antagonists
,
antagonists & inhibitors
2012
The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCF
TIR1/AFB
(for Skp1-Cull-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1 / AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H⁺-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H⁺-ATPase activation has yet to be elucidated. Here, we present direct evidence for H⁺-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H⁺-ATPase and increased H⁺-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H⁺-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H⁺-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H⁺-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H⁺-ATPase phosphorylation. Our results define the activation mechanism of H⁺-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory.
Journal Article
Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling
2015
Structural view of a dynamic molecular switch mechanism that governs repression and activation of the jasmonate plant hormone pathway.
Jasmonate hormone signalling
The signalling pathway triggered by the plant hormone jasmonate regulates plant stress responses and also growth and development. At a molecular level, the jasmonate ZIM-domain (JAZ) proteins act as jasmonate co-receptors but also repress the activity of MYC transcription factors, which are required to convey the jasmonate signal. Sheng Yang He and colleagues use X-ray crystallography to address the question of how these same proteins can switch roles between transcriptional repressors and jasmonate co-receptors. Previous work had suggested that the conserved Jas motif of a JAZ repressor binds to jasmonate as a partially unwound helix. These authors find that the motif forms a complete α-helix on binding to MYC. Consequently, the Jas motif becomes an integral part of the MYC N-terminal fold resulting in a notable conformational change in MYC. This competitive binding inhibits MYC interaction with a subunit of the transcriptional Mediator complex, repressing its transcriptional activity.
The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development
1
,
2
,
3
,
4
,
5
,
6
,
7
. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase
8
,
9
,
10
,
11
. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression
3
,
10
,
12
. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that
Arabidopsis
MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.
Journal Article
SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis
by
Paz-Ares, Javier
,
Masiero, Simona
,
Leyva, Antonio
in
Arabidopsis
,
Arabidopsis - drug effects
,
Arabidopsis - metabolism
2014
To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. PHOSPHATE STARVATION RESPONSE 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis , SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.
Significance When P levels are low, plants activate an array of adaptive responses to increase efficient acquisition and use of phosphate (Pi), the form in which P is preferentially absorbed, and to protect themselves from Pi starvation stress. Considerable progress has been made recently in dissecting the plant Pi starvation signaling pathway. Nonetheless, little is known as to how Pi levels are perceived by plants. Here, we identify the nuclear protein SPX1 as a Pi-dependent inhibitor of DNA binding by PHOSPHATE STARVATION RESPONSE 1 (PHR1), a master regulator of Pi starvation responses. We show that the Pi dependence of SPX1 inhibition of PHR1 activity can be recreated in vitro using purified proteins, which indicates that the SPX1/PHR1 module links Pi sensing and signaling.
Journal Article
Trehalose 6-Phosphate Positively Regulates Fatty Acid Synthesis by Stabilizing WRINKLED1
by
Liu, Hui
,
Feil, Regina
,
Shanklin, John
in
Arabidopsis - genetics
,
Arabidopsis - metabolism
,
Arabidopsis Proteins - antagonists & inhibitors
2018
WRINKLED1 (WRI1), the transcriptional activator of fatty acid synthesis, was recently identified as a target of KIN10, a catalytic α-subunit of the SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1). We tested the hypothesis that trehalose 6-phosphate (T6P), a signal of cellular sucrose status, can regulate fatty acid synthesis by inhibiting SnRK1. Incubation of Brassica napus suspension cells in medium containing T6P, or overexpression of the Escherichia coli T6P synthase, OtsA, in Nicotiana benthamiana, significantly increased T6P levels, WRI1 levels, and fatty acid synthesis rates. T6P directly bound to purified recombinant KIN10 with an equilibrium dissociation constant (K
d) of 32 ± 6 μM based on microscale thermophoresis. GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1) bound to KIN10 (K
d 19 ± 3 μM) and activated it by phosphorylation. In the presence of T6P, the GRIK1-KIN10 association was weakened by more than 3-fold (K
d 68 ± 9.8 μM), which reduced both the phosphorylation of KIN10 and its activity. T6P-dependent inhibition of SnRK1 activity was reduced in extracts of individual Arabidopsis thaliana grik1 and grik2 mutants relative to the wild type, while SnRK1 activity in grik1 grik2 extracts was enhanced by T6P. These results indicate that the T6P sensitivity of SnRK1 in vivo is GRIK1/GRIK2 dependent. Based on our findings, we propose a mechanistic model that links sugar signaling and fatty acid homeostasis.
Journal Article
SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana
by
Bassham, Diane C.
,
Soto-Burgos, Junmarie
in
Abiotic stress
,
Activation
,
Arabidopsis - cytology
2017
Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.
Journal Article
Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors
by
Ma, Yue
,
Szostkiewicz, Izabela
,
Grill, Erwin
in
abscisic acid
,
Abscisic Acid - metabolism
,
Abscisic Acid - pharmacology
2009
The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.
Journal Article
Coordinated regulation of Arabidopsis thaliana development by light and gibberellins
by
Gusmaroli, G
,
Yu, L
,
Chen, L
in
antagonists & inhibitors
,
Arabidopsis
,
Arabidopsis - drug effects
2008
Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.
Journal Article
Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins
by
Fujii, Hiroaki
,
Alfred, Simon E
,
Rodrigues, Americo
in
abscisic acid
,
Abscisic Acid - agonists
,
Abscisic Acid - metabolism
2009
Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
Journal Article
Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway
by
Kim, Tae-Wuk
,
Michniewicz, Marta
,
Wang, Zhi-Yong
in
631/136/334/2244/710
,
631/449/1741/2670
,
631/449/2124
2012
Brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of a MAPK module, revealing a link between a plant MAPKKK and its upstream regulators, and between brassinosteroid and a specific developmental output.
Pivotal role for brassinosteroids
The brassinosteroids were the last of the known major groups of plant hormones to be discovered, in 1979 (see
http://go.nature.com/a6bryi
). Previously, steroid hormones had been identified only in animals and fungi. In this study, Zhi-Yong Wang and colleagues show that brassinosteroid negatively regulates stomatal development, thereby uncovering a mechanism by which a plant hormone coordinates development with elements of photosynthesis to promote optimal plant growth.
Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood
1
,
2
, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in
Arabidopsis
that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary
in vitro
and
in vivo
assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.
Journal Article